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Abstract
We study the polynomial-time approximability of the Longest Run Subsequence problem (LRS
for short) and its complementary minimization variant Minimum Run Subsequence Deletion
problem (MRSD for short). For a string S = s1 · · · sn over an alphabet Σ, a subsequence S′ of S

is S′ = si1 · · · sip , such that 1 ≤ i1 < i2 < . . . < ip ≤ |S|. A run of a symbol σ ∈ Σ in S is a
maximal substring of consecutive occurrences of σ. A run subsequence S′ of S is a subsequence
of S in which every symbol σ ∈ Σ occurs in at most one run. The co-subsequence S′ of the
subsequence S′ = si1 · · · sip in S is the subsequence obtained by deleting all the characters in S′

from S, i.e., S′ = sj1 · · · sjn−p such that j1 < j2 < . . . < jn−p and {j1, . . . , jn−p} = {1, . . . , n} \
{i1, . . . , ip}. Given a string S, the goal of LRS (resp., MRSD) is to find a run subsequence S∗

of S such that the length |S∗| is maximized (resp., the number |S∗| of deleted symbols from S is
minimized) over all the run subsequences of S. Let k be the maximum number of symbol occurrences
in the input S. It is known that LRS and MRSD are APX-hard even if k = 2. In this paper, we
show that LRS can be approximated in polynomial time within factors of (k + 2)/3 for k = 2 or 3,
and 2(k + 1)/5 for every k ≥ 4. Furthermore, we show that MRSD can be approximated in linear
time within a factor of (k + 4)/4 if k is even and (k + 3)/4 if k is odd.
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1 Introduction

Scaffolding is one of the key informatics processes in DNA sequencing. DNA sequencing is
generally carried out through the following steps: (i) Tens to hundreds of millions of DNA
fragments extracted from random positions are read via shotgun sequencing, (ii) the extracted
random fragments (reads) are assembled into a series of contiguous sequences (contigs) using
an assembly algorithm, and (iii) finally, the contigs are arranged in the correct order based
on certain criteria. This step (iii) is called scaffolding, which serves as the original motivation
of this study. One common approach to scaffolding is to rearrange contigs by comparing
multiple incomplete assemblies of related samples (see [10] for example).
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3:2 Longest Run Subsequence and Complementary Minimization Problems

The formulation of contig rearrangement from multiple incomplete assemblies in the
scaffolding phase as a string processing problem by Schrinner et al. [11, 12] is known as
the Longest Run Subsequence problem (LRS). Let Σ be a finite alphabet of symbols,
and |Σ| = m. A string S = s1 · · · sn is a sequence of n characters, each of which is a
symbol in Σ. Two or more characters in S can be the same symbol in Σ. For a string
S = s1 · · · sn, |S| denotes the length of S, i.e., |S| = n. For two strings S1 and S2, S1 ◦ S2
denotes the concatenation of S1 and S2. A subsequence S′ of S is a sequence S′ = si1 · · · sip

,
such that 1 ≤ i1 < i2 < . . . < ip ≤ |S|. Let S[i] denote the character of S in the ith position
for 1 ≤ i ≤ |S|, and S[i, j] denote the substring of S that starts from the ith position and
ends at the jth position. A σ-run in S is a substring S[i, j] such that S[ℓ] = σ, for any
ℓ = i, i + 1, . . . , j, but S[i − 1] ̸= σ and S[j + 1] ̸= σ. Given a string S on alphabet Σ, a run
subsequence S′ of S is a subsequence of S in which every symbol σ ∈ Σ occurs in at most
one run. For a string S = abbbaab, for example, the substring S[2, 4] is a b-run, and aaab is
a run subsequence of S.

▶ Problem 1 (Longest Run Subsequence problem, LRS). Given a string S in Σn, the
goal of LRS is to find a longest run subsequence S∗ of S, i.e., every σ ∈ Σ occurs in at most
one run in S∗ and the length |S∗| is maximized over all the run subsequences of S.

For the string S = abbbaab, the longest run subsequnece S∗ of S is bbbaa of length five.
If the maximum number of occurrences of each symbol in the input string S is bounded
by k, then the problem is called the k-Longest Run Subsequence problem (k-LRS). One
sees that 1-LRS is trivial since the length of all the runs in the input string S is one, and
thus the input S itself is the optimal run subsequence. Unfortunately, Schrinner et al. [12]
showed that LRS is generally NP-hard. Subsequently, Dondi and Sikora [5] showed 2-LRS
is APX-hard, while, as a positive result, they provided a polynomial-time k-approximation
algorithm for k-LRS. Recently, Asahiro et al. [2] improved the approximation ratio to (k+1)/2
for k-LRS, and have shown that for the case k = 2, a better approximation ratio 4/3 than
(k + 1)/2 = 3/2 is achieved.

In this paper, we first derive further improved approximability results for k-LRS:

▶ Theorem 1. k-LRS can be approximated in O(mn2) time within factors of (k + 2)/3 for
k = 2 or 3, and 2(k + 1)/5 for every k ≥ 4.

This paper also considers the complementary minimization variant of LRS, called the
Minimum Run Subsequence Deletion problem (MRSD). The co-subsequence S′ of the
subsequence S′ = si1 · · · sip

in S is the subsequence obtained by deleting all the characters
in S′ from S, i.e., S′ = sj1 · · · sjn−p such that j1 < j2 < . . . < jn−p and {j1, . . . , jn−p} =
{1, . . . , n} \ {i1, . . . , ip}. For example, consider S = abcde. Then, for a subsequence S′ = abd,
the co-subsequence S′ of S′ is S′ = ce. Note that for a subsequence S′ of a string S, S′ is not
unique unless we specify position of each character of S′ in S: for S = ababa and S′ = aa

(without indices from which these a’s come), candidates of S′ is bba, bab, and abb of the
same length three. As will be seen in the following, only the number of deleted characters is
important in some cases, but we often need to take care of from where a character is deleted.

▶ Problem 2 (Minimum Run Subsequnce Deletion problem, MRSD). Given a string S

in Σn, the goal of MRSD is to find a run subsequence S∗ of S such that the number |S∗| of
deleted symbols from S is minimized over all the run subsequence of S.

Similarly to k-LRS, if the maximum number of occurrences of each symbol in the input
string S is bounded by k, the problem is called the k-Minimum Run Subsequence
Deletion problem (k-MRSD). Since the run subsequence obtained by minimizing the
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number of deletions in MRSD corresponds exactly to the longest run subsequence in LRS, LRS
and MRSD are essentially equivalent as decision problems. However, due to the difference
in the objective functions, MRSD may exhibit different characteristics from LRS in terms
of approximability. Thus, a natural question arises: Which problem is easier/harder to
approximate, or are they equally hard?

To gain insight into this question, we consider two examples of problem pairs that are
essentially equivalent as decision problems but differ in their objective functions, similar
to LRS and MRSD. The first example is the pair of Max-2SAT and its deletion variant,
Min-2SAT Deletion. It is known that 2SAT can be solved in polynomial time [3]. However,
in the case where the instance is unsatisfiable, the objective of Max-2SAT is to find a truth
assignment that maximizes the number of satisfied clauses (a maximization problem). In
contrast, the objective of Min-2SAT Deletion is to minimize the number of unsatisfied
clauses (a minimization problem). For these problems, the following results are known: The
maximization version, Max-2SAT, admits a 1.0638-approximation algorithm [9], but it is
NP-hard to approximate within a factor of 1.0476 [6]. On the other hand, the best known
approximation ratio for the minimization version, Min-2SAT Deletion, is O(

√
log n) [1],

and it is known to be NP-hard to approximate within a factor of 1.36067[4]. Thus, intuitively,
the maximization version is easier to approximate than the deletion version for these two
problems.

Another example is the pair consisting of the Maximum Independent Set problem
(MaxIS) and the Minimum Vertex Cover problem (MinVC). For any graph G = (V, E)
and any independent set IS ⊆ V of G, V \ IS forms a vertex cover. Thus, MinVC can be
seen as the complementary minimization variant of MaxIS. For these problems, the following
results are known: MaxIS is NP-hard to approximate within a factor of n1−ε for any ε > 0 [13].
In contrast, MinVC is known to admit a 2 − Θ(1/

√
log n)-approximation algorithm [7]. Thus,

contrary to the previous pair, in this case, the maximization version is harder to approximate
than the deletion version.

As the second contribution, the paper investigates the approximability of k-MRSD:

▶ Theorem 2. k-MRSD can be approximated in linear time within a factor of (k + 4)/4 for
even k, and (k + 3)/4 for odd k.

Namely, unlike the two aforementioned examples, LRS and MRSD can be considered as
problems that currently share similar approximation ratios of O(k). We remark that the
basic strategies of the proposed approximation algorithms for MRSD are very similar to those
for LRS, but the analyses of the approximation ratios are quite different.

Notation. For each symbol σ ∈ Σ, σh and ℓmax(σ) denote a length-h σ-run and the length of
the longest σ-run in the input string S, respectively. Let occ(σ) be the number of occurrences
of σ in the input string S. Let occmax(S) = maxσ∈S occ(σ). Without loss of generality, we
assume that the number of occurrences of each symbol σ ∈ Σ in S is at least one, and if it is
one, then we say σ is unique.

▶ Example 3. Consider a string S = babcbcadedggg. Then S includes two a1, three b1,
two c1, two d1, and one e1, where each length is one; and a length-3 g-run g3. Therefore,
the length of the longest run for a, b, c, d, or e is 1, and for g is 3, respectively. That is,
ℓmax(a) = ℓmax(b) = ℓmax(c) = ℓmax(d) = ℓmax(e) = 1 and ℓmax(g) = 3. The number occ(b)
of occurrences of b is three, e is unique, i.e., occ(e) = 1, and occmax(S) = 3.

WABI 2025



3:4 Longest Run Subsequence and Complementary Minimization Problems

2 Approximation algorithms for Longest Run Subsequence

In this section we consider LRS and design approximation algorithms for k-LRS. That is, we
assume that the maximum number occmax(S) of symbol occurrences in the input S is always
bounded by k.

2.1 Preprocessing

We first introduce an inserting operation to preprocess the input string S. For every symbol
σ with ℓmax(σ) ≥ 3, we create an auxiliary symbol σ′. The auxiliary alphabet that contains
all the auxiliary symbols is denoted as Σ′. The inserting operation inserts a copy of a symbol
σ′ after the first two consecutive symbols σσ in a σh with h ≥ 3. We repeatedly apply the
inserting operation until there is no σh for any symbol σ and any h ≥ 3.

▶ Operation (An inserting operation). Given a σh with h ≥ 3 in the string S, the operation
inserts a copy of the symbol σ′ ∈ Σ′ after the first two consecutive symbols σσ.

▶ Example 4. Recall the string S in Example 3 and ℓmax(g) = 3. After the preprocessing,
g3 becomes ggg′g, and the resulting string is S′ = babcbcadedggg′g.

One clearly sees that in the preprocessed string, denoted as S′, ℓmax(σ) ≤ 2 for any
symbol σ ∈ Σ (and ℓmax(σ′) = 1 for any auxiliary symbol σ′ ∈ Σ′). Let Π ⊆ Σ denote the
subset of symbols σ’s such that ℓmax(σ) = 2, and then let Λ = (Σ ∪ Σ′) \ Π.

2.2 The algorithm

We present an algorithm ALG1 to compute a run-subsequence ALG1(S′) for the preprocessed
string S′ obtained by applying the above preprocessing to S.

▶ Definition 5. For a symbol s ∈ Λ that is not unique, if every two consecutive occurrences
of s in S′ are separated by at least two symbols, then s is a good symbol. Otherwise, s is a
bad symbol and every substring of S′ in the form of sts, where t is another symbol, is a bad
segment associated with s.

Using Definition 5, we partition Λ into three subsets Λ1, Λ2 and Λ3, where Λ1 contains all
the unique symbols, Λ2 contains all the good symbols, and Λ3 contains all the bad symbols.
One sees that such a partition can be done in O(|S′|) time.

Our algorithm constructs an initial solution for S′ and then applies two local search
operations to update the solution. During the algorithm ALG1, the current solution is always
denoted as ALG1(S′). Initially, for each symbol s ∈ Π ∪ Λ1 ∪ Λ2, the algorithm picks its
leftmost longest run in S′ into ALG1(S′); for each bad symbol s ∈ Λ3, the algorithm picks
the leftmost s in the first bad segment associated with s into ALG1(S′). Note that all these
picked runs are in the same order as they show up in S′, i.e., ALG1(S′) is a subsequence
of S′. We continue to illustrate using the string in Example 4.

▶ Example 6. Consider the string S′ = babcbcadedggg′g. We have Π = {g}, Λ1 = {e, g′},
Λ2 = {a}, and Λ3 = {b, c, d}. The initial solution ALG1(S′) is bacdeggg′, which is obtained
by picking the symbols in the boxes as follows:

b a b c b c a d e d gg g′ g.



Y. Asahiro et al. 3:5

Observe that if the symbol t after the picked bad symbol s in the associated bad segment
sts is not picked, then we can add the second bad symbol s in the bad segment to the solution
to increase its length by one. In the sequel, we aim to do this by possibly swapping some
picked good symbols with their respective copies at the other places.

To this purpose, we further partition Λ3 into two subsets Λ′
3 and Λ′′

3 , where Λ′′
3 contains

those bad symbols, each of which has a length-2 run in the solution ALG1(S′). At the
beginning, Λ′

3 = Λ3 and Λ′′
3 = ∅.

We design two local operations to repeatedly improve the initial solution ALG1(S′). The
first operation is almost the above observation, while the second goes slightly further to swap
a picked symbol.

▶ Operation (Local operation-1 for s ∈ Λ′
3). Given a symbol s ∈ Λ′

3 in a bad segment sts

such that its symbol t is not picked into ALG1(S′), the operation replaces s in ALG1(S′) by
the two copies of s in this bad segment, and moves s from Λ′

3 to Λ′′
3 .

▶ Operation (Local operation-2 for s ∈ Λ′
3). Given a symbol s ∈ Λ′

3 in a bad segment sts such
that its symbol t ∈ Λ2 ∪ Λ′

3 is picked into ALG1(S′), the operation finds another occurrence
of t in S′ that does not break any length-2 runs in ALG1(S′), replaces the picked t in
ALG1(S′) by this occurrence and replaces s in ALG1(S′) by the two copies of s in this bad
segment, and moves s from Λ′

3 to Λ′′
3 .

We remark that while applying the above two local operations, the σ2-run for each σ ∈ Π
and the σ-run for each σ ∈ Λ1 are untouched; for each σ ∈ Λ2 ∪ Λ′

3, it appears exactly once
in ALG1(S′), while for each σ ∈ Λ′′

3 , it appears twice in ALG1(S′) and they are picked from
a bad segment associated with σ. The goal of the local search is to reduce the number of
bad symbols in Λ′

3 as much as possible, and the process terminates when none of the two
local operations is applicable. A high-level description of the algorithm is as follows:

Algorithm 1 A high-level description of the algorithm ALG1.

Input: The sequence S′ obtained from preprocessing S.
Output: A subsequence ALG1(S′) of S′.

1: Partition the symbols in S′ into four subsets Π, Λ1, Λ2, and Λ3.
2: Construct an initial solution ALG1(S′) where for each σ ∈ Π ∪ Λ1 ∪ Λ2, pick its leftmost

longest σ-run and if σ ∈ Λ3 then pick the first σ-run in its first bad segment.
3: Repeatedly apply the local operation-1 and 2 to update ALG1(S′) until impossible.
4: Return ALG1(S′) as the solution.

We examine the time complexity of ALG1. First notice that |S′| ≤ 3n/2 and |Σ′| ≤ m.
Therefore, the partition of Σ ∪ Σ′ into Π, Λ1, Λ2, Λ3 can be done in O(n) time. One sees
that ALG1 executes at most 2m local operations, and finding a symbol in Λ′

3 to which the
local operation-1 is applicable takes O(n) time and finding a symbol in Λ′

3 to which the local
operation-2 is applicable takes O(n2) time. It follows that ALG1 runs in O(mn2).

We continue to illustrate using the string in Example 4.

▶ Example 7. Consider the string S′ = babcbcadedggg′g. From Example 6, the initial
solution ALG1(S′) is bacdeggg′ and Λ3 = {b, c, d}, so that Λ′

3 = {b, c, d} and Λ′′
3 = ∅.

The local operation-1 is applicable for c ∈ Λ′
3 which is associated with only one bad

segment cbc, where its b is not picked. Thus ALG1(S′) is updated to baccdeggg′ by picking
the symbols in the boxes as follows:

WABI 2025



3:6 Longest Run Subsequence and Complementary Minimization Problems

b a b c b c a d e d gg g′ g,

and Λ′
3 = {b, d} and Λ′′

3 = {c}.
One sees that the local operation-1 is no longer applicable for symbols b and d in Λ′

3, but
then the local operation-2 is applicable to b in the first bad segment bab associated with b,
since the second occurrence of a does not break any length-2 runs in ALG1(S′). As a result,
ALG1(S′) is updated to bbccaedggg′ by picking the symbols in the boxes as follows:

b a b c b c a d e d gg g′ g

and Λ′
3 = {d} and Λ′′

3 = {b, c}. For the last symbol d ∈ Λ′
3, we cannot apply neither the

local operation-1 nor the local operation-2, and thus the algorithm terminates.

2.3 Post-processing
We process the achieved solution ALG1(S′) to produce a solution ALG1(S) for the input
S. Recall that S′ is the result of preprocessing S by the inserting operations, each inserts
a copy of the auxiliary symbol σ′ after the first two consecutive symbols σσ in a σh with
h ≥ 3. For each auxiliary symbol σ′ ∈ Σ′, we delete its single copy from ALG1(S′) and then
replace the σ2 in ALG1(S′) by a longest σ-run in the input sequence S. We remark that σ′

is either unique or good, and thus it appears exactly once in ALG1(S′), and that no symbol
of the longest σ-run in the input sequence S breaks any length-2 run in ALG1(S′).

We continue to illustrate using the string in Example 3.

▶ Example 8. Consider the string S = babcbcadedggg, for which S′ = babcbcadedggg′g,
where g′ is inserted by the inserting operation. From Example 7, the achieved solution
ALG1(S′) for S′ is bbccadegg′ by picking the symbols in the boxes as follows:

b a b c b c a d e d gg g′ g,

The post-processing gives the solution ALG1(S) = bbccadeggg for S by picking the symbols
in the boxes as follows:

b a b c b c a d e d ggg .

2.4 Performance analysis
In this section, we analyze the worst-case ratio of our algorithm. Let ALG1(S) and OPT (S)
denote the output sequence by our algorithm and an optimal solution when the input sequence
is S, respectively. Let α(S) = |OP T (S)|

|ALG1(S)| .

▶ Lemma 9. For an input string S, let S′ be the result of preprocessing S by the inserting
operation. Then α(S′) ≥ α(S) is satisfied.

Proof. S is a subsequence of S′. Therefore, |OPT (S)| ≤ |OPT (S′)|.
We next prove |ALG1(S′)| ≤ |ALG1(S)|. Note that for σ′ ∈ Σ′, it corresponds to a

symbol σ with ℓmax(σ) ≥ 3 in S. If ℓmax(σ) = 3 in S, then σ′ is unique in S′. Otherwise,
ℓmax(σ) ≥ 4 in S, then σ′ is a good symbol since in between every two σ′ symbols, there is a
σ2 with σ ̸= σ′. That is, σ′ ∈ Λ1 ∪ Λ2 and thus the length of σ′ in ALG1(S′) is exactly one.
Therefore, the total length of symbols σ and σ′ in ALG1(S′) is exactly three. It indicates
that |ALG1(S′)| ≤ |ALG1(S)| since we choose the longest σ-run whose length ℓmax(σ) is at
least three in ALG1(S). Then the lemma is proved. ◀
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We remark that since the approximation ratio of the string S′ is always worse than the
one of S by Lemma 9, we show a bound on the approximation ratio of S′ instead of the
original input S.

Now, we are ready to prove the worst-case ratio of our algorithm. Let ni be the number
of unique symbols whose length is i in the optimal solution OPT (S′) for i = 0, 1. Recall
that for each symbol σ ∈ Λ2, the length of the σ-run in ALG1(S′) must be one. We use
xi to denote the number of symbols in Λ2 whose length is i in OPT (S′) for i = 0, 1, . . . , k.
Similarly, let yi (zi, respectively) be the number of symbols in Λ′

3 (Λ′′
3 , respectively) whose

length is i in OPT (S′) for i = 0, 1, . . . , k. Lastly, for each symbol σ ∈ Π, the length of the
σ-run in ALG1(S′) is two. We denote by ti the number of symbols in Π whose length is i in
OPT (S′) for i = 0, 1, . . . , k. In conclusion, we have the following two equalities:

|OPT (S′)| = n1 +
k∑

i=1
i(xi + yi + zi + ti), and (1)

|ALG1(S′)| = n0 + n1 +
k∑

i=0
(xi + yi + 2zi + 2ti). (2)

Let #D be the total number of symbols deleted from S′ by the optimal algorithm to
obtain OPT (S′). Notice that if the length of the σ-run is i in OPT (S′) and σ is not unique,
then the total number of deleted σ symbols is at most k − i. Therefore the upper bound on
#D is

#D ≤ n0 +
k−1∑
i=0

(k − i)(xi + yi + zi + ti). (3)

Then we estimate a lower bound on #D as follows.

▶ Lemma 10. For the number of deleted symbols #D, we have

#D ≥
k∑

i=2

(
2(i − 1)xi + (i − 1)(yi + zi) +

(
i

2 − 1
)

ti

)
.

Proof. Since each symbol σ ∈ Λ2 is a good symbol, there exist at least two other symbols
in between every two σ-runs. In order to generate a length-i σ-run in OPT (S′), at least
2(i − 1) symbols are deleted.

For each symbol σ ∈ Λ3, ℓmax(σ) = 1 in S′. So, forming a length-i σ-run must delete at
least i − 1 symbols.

Lastly, consider a symbol σ ∈ Π. Recall that ℓmax(σ) = 2. It indicates that we must
delete at least one symbol to generate every length-3 σ-run. So for each symbol in Π, we
must delete at least i

2 − 1 symbols.
This completes the proof of this lemma. ◀

By Lemma 10 and Eq.(3), we have

k∑
i=2

(
2(i − 1)xi + (i − 1)(yi + zi) +

(
i

2 − 1
)

ti

)
≤ n0 +

k−1∑
i=0

(k − i)(xi + yi + zi + ti),

WABI 2025



3:8 Longest Run Subsequence and Complementary Minimization Problems

which is equivalent to

2(k − 1)xk + (k − 1)(yk + zk) +
(

k

2 − 1
)

tk

≤ n0 + k(x0 + y0 + z0 + t0) + (k − 1)(x1 + y1 + z1 + t1)

+
k−1∑
i=2

(k − 3i + 2)xi +
k−1∑
i=2

(k − 2i + 1)(yi + zi) +
k−1∑
i=2

(
k − 3i

2 + 1
)

ti. (4)

▶ Lemma 11. The summation of yi, zi satisfies the following inequality:

k∑
i=0

yi ≤ n0 + n1 +
k∑

i=0
zi.

Proof. The proof appears in Appendix A. ◀

We can show the following theorem:

▶ Theorem 1. k-LRS can be approximated in O(mn2) time within factors of (k + 2)/3 for
k = 2 or 3, and 2(k + 1)/5 for every k ≥ 4.

Proof sketch. Let ℓ be a constant; to get the best worst-case ratio, we will set ℓ = 1/3 for
k = 2, 3, and ℓ = (2k − 3)/(5k − 5) for k ≥ 4 later.

By Eq.(4) and Eq.(1), we have

k(xk + yk + zk + tk)

= 2(k − 1)ℓxk + (k − 1)ℓ(yk + zk) +
(

k

2 − 1
)

ℓtk

+ (k − (2k − 2)ℓ)xk + (k − (k − 1)ℓ)(yk + zk) +
(

k −
(

k

2 − 1
)

ℓ

)
tk

≤ n0ℓ + kℓ(x0 + y0 + z0 + t0) + (k − 1)ℓ(x1 + y1 + z1 + t1)

+
k−1∑
i=2

(k − 3i + 2)ℓxi +
k−1∑
i=2

(k − 2i + 1)ℓ(yi + zi) +
k−1∑
i=2

(
k − 3i

2 + 1
)

ℓti

+ (k − (2k − 2)ℓ)xk + (k − (k − 1)ℓ)(yk + zk) +
(

k −
(

k

2 − 1
)

ℓ

)
tk, and (5)

|OPT (S′)| = n1 +
k−1∑
i=1

i(xi + yi + zi + ti) + k(xk + yk + zk + tk)

≤ n0ℓ + n1 + kℓ(x0 + y0 + z0 + t0) + ((k − 1)ℓ + 1)(x1 + y1 + z1 + t1)

+
k−1∑
i=2

((k − 3i + 2)ℓ + i)xi +
k−1∑
i=2

((k − 2i + 1)ℓ + i)(yi + zi)

+
k−1∑
i=2

((
k − 3i

2 + 1
)

ℓ + i

)
ti + (k − (2k − 2)ℓ)xk

+ (k − (k − 1)ℓ)(yk + zk) +
(

k −
(

k

2 − 1
)

ℓ

)
tk. (6)
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We discuss two cases of k. When k = 2, 3, ℓ = 1
3 and k+2

3 ≥ 5k+2
12 and k+2

3 ≤ min{ 2k+1
3 , 5k+2

6 }.
By Lemma 11, Eqs. (6) and (2), the following inequality holds.

|OPT (S′)| ≤ k + 2
3 |ALG1(S′)|. (7)

On the other hand, when k ≥ 4, ℓ = 2k−3
5k−5 and thus ℓ ∈ [ 1

3 , 1
2 ). By Lemma 11, we have

k∑
i=0

(yi + zi) ≤ 1
3(n0 + n1) + 2

3

k∑
i=0

(yi + 2zi). (8)

Here we obtain several inequalities that are used in the following. If 2 ≤ i ≤ k − 1, then
(k − 3i + 2)ℓ + i ≤ (k − 4)ℓ + 2 ≤ (k − 1)ℓ + 1, and k − (2k − 2)ℓ ≤ (k − 1)ℓ + 1. Moreover,
(k − 2i + 1)ℓ + i ≤ (3 − k)ℓ + k − 1 ≤ k − (k − 1)ℓ, and

(
k − 3i

2 + 1
)

ℓ + i ≤ (5−k)ℓ
2 + k − 1 ≤

k −
(

k
2 − 1

)
ℓ. Note that the following inequality holds:

(k − 1)ℓ + 1 ≤ k − (k − 1)ℓ ≤ k −
(

k

2 − 1
)

ℓ ≤ 2(k − 1)ℓ + 2.

By Eqs.(8) and (2), Eq.(6) can be simplified into the following inequality:

|OPT (S′)| ≤ 2(k + 1)
5 |ALG1(S′)|. (9)

Combining Eqs.(7) and (9), the theorem is proved. ◀

We note that the analysis on the approximation ratio of (k + 2)/3 for k = 2 or 3 is strictly
tight. However, for the (2k + 2)/5 ratio of k ≥ 4, we know only a bad example for which the
approximation ratio is (2k + 1)/5; there remains a slight gap. See Appendix C for details.

3 Simple approximation algorithm for MRSD

In this section, we consider the deletion variant k-MRSD. Again, assume that occmax(S)
is bounded by k. As a warm-up, we design a simple approximation algorithm ALG2 with
approximation ratios (k + 2)/2 if k is even, and (k + 1)/2 if k is odd:

Algorithm 2 A high-level description of our algorithm ALG2.

Input: An input string S in which every symbol σ ∈ Σ appears at most k times.
Output: A run subsequence ALG2(S) of S.

1: For each σ ∈ Σ, select the leftmost longest σ-run in S.
2: Output the concatenation of all the selected longest runs.

That is, ALG2 deletes all unselected runs for every symbol from S.

▶ Example 12. Consider the input string S = a1b1a2b1c1a2b1c1b1c2b2 of length 15 for MRSD.
The leftmost longest a-run, b-run, and c-run are S[3, 4], S[14, 15], and S[12, 13], respectively.
Therefore, the output subsequence of ALG2 is ALG2(S) = a2c2b2, and thus the co-subsequence
of ALG2(S) is ALG2(S) = a1b2c1a2b1c1b1. Therefore, the number |ALG2(S)| of deleted
characters from S by our algorithm ALG2 is nine.
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Clearly, ALG2 can be implemented in linear time. We bound its approximation ratio in
the following. Let S be an input string of k-MRSD. Suppose that OPT (S) and ALG2(S)
are solutions obtained by an optimal algorithm OPT and our algorithm ALG2, respectively.
An outline of our proof on the approximation ratio is as follows: (I) We first obtain an
upper-bound on the number |ALG2(S)| of deleted characters by ALG2. Then, (II) we bound
the upper-bound above by α|OPT (S)|, where α = (k + 2)/2 if k is even and α = (k + 1)/2 if
k is odd.

(I) We obtain an upper bound on the number |ALG2(S)| of deleted characters by our
algorithm ALG2. To do so, we first construct a new string Ŝ, called a “marked” string, by
replacing every character s = σ in the co-subsequence OPT (S) of OPT (S) with an auxiliary
symbol σ̂ ̸∈ Σ, called a “marked” symbol (character). Let Σ̂ be the alphabet of marked
symbols, where σ̂ ∈ Σ̂ if σ ∈ Σ. Then, if the ith character si = σ of S is in OPT (S), then
it is replaced with the corresponding marked symbol σ̂. Furthermore, we replace every
marked character in Ŝ with a new symbol γ ̸∈ Σ ∪ Σ̂, and call it the “γ-string” Sγ of
S. For example, consider S = a1b1a2b1c1a2b1c1b1c2b2 as an input for MRSD again, where
Σ = {a, b, c}. One can verify that OPT (S) = a5c3b2 is an optimal solution. Then, we obtain
the marked string Ŝ = a1b̂1a2b̂1ĉ1a2b̂1c1b̂1c2b2, where Σ̂ = {â, b̂, ĉ} is the alphabet of the
marked symbols. By replacing every marked character in Σ̂ with γ, we obtain the γ-string
Sγ = a1γ1a2γ1γ1a2γ1c1γ1c2b2 = a1γ1a2γ2a2γ1c1γ1c2b2. Let r be the number of γ-runs in
the γ-string. For example, Sγ includes four γ-runs, i.e., r = 4, three length-1 γ-runs and one
length-2 γ-run. Note that r ≤ |OPT (S)| holds.

Next, just for the sake of the analysis on approximation ratios, we introduce a new
algorithm ALG2’ for the γ-string Sγ as input, which is very similar to ALG2, but ALG2’ deletes
all the γ-runs. It is important to note that it is not necessary to find any optimal solution.
Later, we show that the number |ALG2′(Sγ)| of characters deleted by ALG2’ for Sγ is a good
upper bound on |ALG2(S)|.

Algorithm 3 A high-level description of our algorithm ALG2’.

Input: The γ-string Sγ of S over the alphabet Σ ∪ {γ}.
Output: A run subsequence ALG2′(Sγ) of Sγ .

1: For each σ ∈ Σ, select the leftmost longest σ-run in Sγ .
2: Output the concatenation of all the selected longest runs.

▶ Example 13. Consider the γ-string Sγ = a1γ1a2γ2a2γ1c1γ1c2b2 of S. Then ALG2′(Sγ) =
a2c2b2 is the output of ALG2’.

Since all γ-runs are deleted from Sγ , ALG2′(Sγ) must be feasible for k-MRSD on the
original input S. Then, we get the following upper bound on |ALG2(S)|:

▶ Lemma 14. For any input string S and its γ-string Sγ , the following inequalities hold:
1. |ALG2(S)| ≥ |ALG2′(Sγ)|;

2. |ALG2(S)| ≤ |ALG2′(Sγ)|.

Proof. (1) ℓmax(σ) in the γ-string Sγ is at most ℓmax(σ) in the original string S for each
σ ∈ Σ. Therefore, |ALG2(S)| ≥ |ALG2′(Sγ)| holds. (2) From |Sγ | = |S| and |ALG2(S)| ≥
|ALG2′(Sγ)|, the number |ALG2′(Sγ)| of characters deleted from Sγ is at least the number
|ALG2(S)| of deleted characters from S. ◀
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(II) Next, we consider an upper bound on the number |ALG2′(Sγ)| of deleted characters
by ALG2’ on Sγ . The crux of the following estimation is the number of deleted characters
from OPT (S) of Sγ by ALG2’.

▶ Lemma 15. For any input string S and its γ-string Sγ for any optimal solution OPT (S),
the following inequality holds:

|ALG2′(Sγ)| ≤
(⌊

k

2

⌋
+ 1

)
· |OPT (S)|

Proof. We first divide γ-runs in the γ-string Sγ into two types, (type-i) σiγ
hσj for σi ̸= σj ,

and (type-ii) σiγ
hσi for an integer h > 0. Suppose that Sγ can be represented by Sγ =

S1
γ ◦ γh ◦ S2

γ . Recall that if we delete all γ’s from Sγ , then the remaining sequence must be
an optimal solution, i.e., a run subsequence. Therefore, if the middle γ-run is in (type-i)
and S1

γ (resp., S2
γ) includes a σ ∈ Σ, then S2

γ (resp., S1
γ) does not include σ. On the other

hand, we can see that the second type γ-run partitions some σi-run in the optimal solution
OPT (S) into the left σi-run and the right σi-run in the γ-string Sγ .

For example, look at a γ-string Sγ = ap1γh1bp2γh2bp3γh3bp4γh4bp5γh5cp6γh6dp7 for
p1, . . . , p7 ≥ 1 and h1, . . . , h6 ≥ 1. We focus on the six γ-runs in Sγ . Since the left
and the right runs (or characters) of the second (also, the third and the fourth) γ-run
in Sγ are the same, it is in (type-ii). Here, we can see that one long b-run of length
(p2 + p3 + p4 + p5) is divided into four b-runs, bp2 , bp3 , bp4 and bp5 . Note that ALG2’ selects
the longest σi-run for each σi ∈ Σ and deletes all other σi-runs from Sγ . Therefore, three
b-runs of the four b-runs are deleted by ALG2’. If q γ-runs divide a σ-run of length at most k

into q +1 σ-runs, then the length of each σ-run except for the longest σ-run is bounded above
by ⌊k/2⌋. This implies that the number of σi’s deleted from OPT (S) for a symbol σi ∈ Σ is
bounded above by ⌊k/2⌋ per γ-run in (type-ii) in the worst case. On the other hand, the
left and the right runs of the first (also, the fifth and the sixth) γ-run in Sγ are different, and
thus it is in (type-i). For example, in the left substring of the fifth length-h5 γ-run, neither
c nor d appears since c and d are included in the right substring of the γ-run. Therefore,
after deleting γh5 , we can independently count the numbers of characters in OPT (S) that
are deleted from the left substring and from the right substring by ALG2’.

Let the number of γ-runs in (type-ii) be r. Note that r ≤ |OPT (S)| holds and the
total number of γ’s in (type-i) and (type-ii) deleted from Sγ is |OPT (S)|. Also, the total
number of σ’s deleted from OPT (S) for all symbols in Σ is bounded above by ⌊k/2⌋ · r.
Hence, we obtain the following inequality on the number of characters deleted by ALG2’:

|ALG2′(Sγ)| ≤ |OPT (S)| +
⌊

k

2

⌋
· r ≤

(⌊
k

2

⌋
+ 1

)
· |OPT (S)|

This completes the proof of this lemma. ◀

From Lemmas 14 and 15, we obtain the following theorem:

▶ Theorem 16. ALG2 is a linear-time approximation algorithm with approximation ratios
(k + 2)/2 if k is even, and (k + 1)/2 if k is odd.

4 Improved approximation algorithm for MRSD

In this section, we present an improved approximation algorithm ALG3 that runs in linear
time and its approximation ratios are (k + 4)/4 if k is even, and (k + 3)/4 if k is odd.
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4.1 Concatenation operation
We first define an alternating σ-run:

▶ Definition 17. An alternating σ-run (simply, an alternating run) in S = S[1, n] is a
substring S[i, i + 2p] for an integer p ≥ 1 such that (i) S[i] = S[i + 2] = . . . = S[i + 2p] = σ,
(ii) S[i + 1] ̸= σ, S[i + 3] ̸= σ, . . ., S[i + 2p − 1] ̸= σ, and (iii) S[i − 2] ̸= σ (if i − 2 ≥ 1),
S[i − 1] ̸= σ (if i − 1 ≥ 1), S[i + 2p + 1] ̸= σ (if i + 2p + 1 ≤ n), and S[i + 2p + 2] ̸= σ (if
i + 2p + 2 ≤ n).

For example, consider a string S = S[1, 15] = ababcababcbcbcc. In the string S, S[1, 3] = aba,
S[2, 4] = bab, S[6, 8] = aba, S[7, 13] = babcbcb, and S[10, 14] = cbcbc are an alternating a-run,
an alternating b-run, an alternating a-run, an alternating b-run, and an alternating c-run,
respectively.

Then, we introduce a concatenation operation to obtain a σ-run from an alternating
σ-run in the string S. Consider an alternating σ-run S[i, i + 2p]. Then, the concatenation
operation deletes all characters that are not σ from S[i, i + 2p], i.e., S[i + 1], S[i + 3], . . .,
S[i + 2p − 1], and obtains a σ-run. For a string ababa, however, there are two possibilities, a3

and b2 by deleting two b’s and three a’s, respectively. The operation finds a concatenation
(i.e., run) as long as possible using an optimal algorithm for the Interval Scheduling
problem (see, e.g., [8]): We regard the alternating run S[i, i + 2p] as the interval [i, i + 2p]
of weight 2p + 1. A pair of two alternating runs S[i, i + 2pi] and S[j, j + 2pj ] is independent
if i + 2pi < j or j + 2pj < i holds. The concatenation operation aims to find a maximum
weight subset of mutually independent alternating runs from S, and obtain a long σ-run
from the selected alternating σ-run by deleting all the characters that are not σ for every σ.

▶ Operation (Concatenation operation). Given the input string S, the operation obtains a
concatenated sequence Sc:
(Step 1) Find all the alternating runs in S.
(Step 2) Select a maximum subset M of mutually independent alternating runs in S.
(Step 3) Delete all characters from S so that every alternating σ-run in M becomes a σ-run,

and obtain a concatenated sequence Sc.

▶ Example 18. Consider again a string S = S[1, 15] = ababcababcbcbcc. In Step 1, we
find an alternating a-run S[1, 3] of weight three, an alternating b-run S[2, 4] of weight
three, an alternating a-run S[6, 8] of weight three, an alternating b-run S[7, 13] of weight
seven, and an alternating c-run S[10, 14] of weight five. Then, in Step 2, we select M =
{S[1, 3], S[6, 8], S[10, 14]} whose total weight is 11. Finally, we delete four characters S[2],
S[7], S[11], S[13] from S, and obtain Sc = aabcaabcccc = a2bca2bc4.

We estimate the running time of the concatenation operation. Note that the number
of alternating runs overlapped at the same position is at most two, and there are O(n)
alternating runs in S. Hence Step 1 can be implemented in O(n) time by scanning the
string S from left to right. Furthermore, during Step 1, we can sort the alternating runs
according to their right-ends in S. Among O(n) alternating runs, we can select the maximum
independent set M by greedily selecting the non-overlapped alternating run with the leftmost
right-end [8] in Step 2, which takes O(n) time. Step 3 needs O(n) time. Therefore, the
total running time of the concatenation operation is O(n).

4.2 The algorithm
We present an improved approximation algorithm ALG3 with approximation ratios (k + 4)/4
if k is even, and (k + 3)/4 if k is odd.
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Algorithm 4 A high-level description of our algorithm ALG3.

Input: An input string S in which every symbol σ appears at most k times.
Output: A run subsequence ALG3(S) of S.

1: Execute the concatenation operation and obtain the concatenated sequence Sc of S.
2: For each σ ∈ Σ, select the leftmost longest σ-run in Sc obtained in the previous step.
3: Output the concatenation of all the selected longest runs.

For example, if the concatenation operation produces Sc = a2bca2bc4 from S, then ALG3
outputs ALG3(S) = a2bc4. It is clear that ALG3 can obtain a feasible solution in O(n) time.

4.3 Approximation ratios
Let OPT (S) and ALG3(S) be the solutions obtained by an optimal algorithm OPT, and
ALG3 for an input string S, respectively. An outline of our proof on the approximation ratio
is very similar to Section 3: (I) We first obtain an upper-bound on the number |ALG3(S)|
of characters deleted by ALG3, comparing the number of characters deleted by the optimal
algorithm. Then, (II) we bound the upper-bound above by α|OPT (S)|, where α = (k + 4)/4
if k is even, and α = (k + 3)/4 if k is odd. Again, we first construct the marked string Ŝ from
S using the optimal algorithm, and design a little bit worse algorithm ALG3’ than ALG3.

Similarly to Section 3, we construct the marked string Ŝ by replacing every character
s = σ in the co-subsequence OPT (S) with a symbol σ̂ ̸∈ Σ. Let Σ̂ be the alphabet of
marked symbols. For example, consider a string S = ababcababcbcbcc of length 15. Then,
OPT (S) = a4b2c3 is an optimal solution and Ŝ = ab̂ab̂ĉab̂abĉbcb̂cc is the marked string
obtained from OPT (S). Note that the optimal solution deletes S[10] = c and thus Ŝ

includes Ŝ[10] = ĉ. Furthermore, c does not appear in Ŝ[1, 9] since OPT (S) must be the run
subsequence and Ŝ[11, 15] includes c’s. In addition, Ŝ[1, 6] does not include b since b’s appear
in Ŝ[8, 15] and Ŝ[7] = b̂.

Similarly to a σ-run for σ ∈ Σ, for the marked symbol σ̂ ∈ Σ̂, a σ̂-run can be defined. Also,
without distinguishing σ̂ from σ, we consider “mixed” σ-runs, σh1 σ̂h2-type, σ̂h1σh2-type,
and σ̂h1σh2 σ̂h3 -type, for some positive integers h1, h2, and h3 in the following. That is, for
example, σ2σ̂3 is regarded as one mixed run of length five. Note that we do not need to
consider the σh1 σ̂h2σh3 -type since marked strings are constructed based on optimal solutions.
Furthermore, we define an alternating-“mixed” run without distinguishing σ̂ from σ as
follows:

▶ Definition 19. An alternating-mixed σ-run (or, simply alternating-mixed run) in Ŝ =
Ŝ[1, n] is a substring Ŝ[i, i + 2p] which satisfies, (Case 1), (Case 2), or (Case 3):
(Case 1) σh1 σ̂h2-type. (i) Ŝ[i] = Ŝ[i + 2] = . . . = Ŝ[i + 2p1] = σ, and Ŝ[i + 2(p1 + 1)] =

Ŝ[i+2(p1 +2)] = . . . = Ŝ[i+2p] = σ̂ for 1 ≤ p1 < p, (ii) Ŝ[i+1] ̸∈ {σ, σ̂}, Ŝ[i+3] ̸∈ {σ, σ̂},
. . ., Ŝ[i + 2p − 1] ̸∈ {σ, σ̂}, and (iii) Ŝ[i − 2] ̸= σ (if i − 2 ≥ 1), Ŝ[i − 1] ̸= σ (if i − 1 ≥ 1),
Ŝ[i + 2p + 1] ̸= σ̂ (if i + 2p + 1 ≤ n), and Ŝ[i + 2p + 2] ̸= σ̂ (if i + 2p + 2 ≤ n). That
is, Ŝ[i, i + 2p1] and Ŝ[i + 2(p1 + 1), i + 2p] are the alternating σ-run and the alternating
σ̂-run, respectively, and Ŝ[1, i+2p] = Ŝ[1, i+2p1]◦σ′ ◦ Ŝ[i+2(p1 +1), i+2p] for a symbol
σ′ ̸∈ {σ, σ̂}.

(Case 2) σ̂h1σh2-type. (i) Ŝ[i] = Ŝ[i + 2] = . . . = Ŝ[i + 2p1] = σ̂, and Ŝ[i + 2(p1 + 1)] =
Ŝ[i+2(p1 +2)] = . . . = Ŝ[i+2p] = σ for 1 ≤ p1 < p, (ii) Ŝ[i+1] ̸∈ {σ, σ̂}, Ŝ[i+3] ̸∈ {σ, σ̂},
. . ., S[i + 2p − 1] ̸∈ {σ, σ̂}, and (iii) Ŝ[i − 2] ̸= σ̂ (if i − 2 ≥ 1), Ŝ[i − 1] ̸= σ̂ (if i − 1 ≥ 1),
Ŝ[i + 2p + 1] ̸= σ (if i + 2p + 1 ≤ n), and Ŝ[i + 2p + 2] ̸= σ (if i + 2p + 2 ≤ n). That
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is, Ŝ[i, i + 2p1] and Ŝ[i + 2(p1 + 1), i + 2p] are the alternating σ̂-run and the alternating
σ-run, respectively, and Ŝ[1, i+2p] = Ŝ[1, i+2p1]◦σ′ ◦ Ŝ[i+2(p1 +1), i+2p] for a symbol
σ′ ̸∈ {σ, σ̂}.

(Case 3) σ̂h1σh2 σ̂h3 -type. (i) Ŝ[i] = Ŝ[i + 2] = . . . = Ŝ[i + 2p1] = σ̂, Ŝ[i + 2(p1 + 1)] = Ŝ[i +
2(p1+2)] = . . . = Ŝ[i+2p2] = σ, and Ŝ[i+2(p2+1)] = Ŝ[i+2(p2+2)] = . . . = Ŝ[i+2p] = σ̂,
for 1 ≤ p1 < p2 < p, (ii) Ŝ[i+1] ̸∈ {σ, σ̂}, Ŝ[i+3] ̸∈ {σ, σ̂}, . . ., Ŝ[i+2p−1] ̸∈ {σ, σ̂}, and
(iii) Ŝ[i−2] ̸= σ̂ (if i−2 ≥ 1), Ŝ[i−1] ̸= σ̂ (if i−1 ≥ 1), S[i+2p+1] ̸= σ̂ (if i+2p+1 ≤ n),
and Ŝ[i + 2p + 2] ̸= σ̂ (if i + 2p + 2 ≤ n). That is, Ŝ[i, i + 2p1] and Ŝ[i + 2(p2 + 1), i + 2p]
are the alternating σ̂-runs, and the middle Ŝ[i + 2(p1 + 1), i + 2p2] is the alternating σ-run,
and Ŝ[1, i + 2p] = Ŝ[1, i + 2p1] ◦ σ′ ◦ Ŝ[i + 2(p1 + 1), i + 2p2] ◦ σ′′ ◦ Ŝ[i + 2(p2 + 1), i + 2p]
for symbols σ′, σ′′ ̸∈ {σ, σ̂}.

For example, consider the marked string Ŝ = ab̂ab̂ĉab̂abĉbcb̂cc of length 15. In the
string Ŝ, Ŝ[2, 4] = b̂ab̂ Ŝ[7, 13] = b̂abĉbcb̂, and Ŝ[10, 14] = ĉbcb̂c are the alternating b-run,
the alternating-mixed b-run in (Case 3), and the alternating-mixed c-run in (Case 2),
respectively.

Here, we introduce the concatenation operation for marked strings by slightly modifying
the concatenation operation.

▶ Operation (Concatenation operation for marked strings). Given the marked string Ŝ of the
input string S, the operation obtains a concatenated sequence Ŝc:
(Step 1) Find all the alternating runs and all the alternating-mixed runs on Σ ∪ Σ̂ in S.
(Step 2) Select a maximum subset M of mutually independent alternating/alternating-

mixed runs in S.
(Step 3) Delete all characters that are neither σ nor σ̂ from S so that every alternating

σ-run, every alternating σ̂-run and every alternating-mixed σ-run in M become a σ-run,
a σ̂-run and a mixed σ-run, respectively, and obtain the concatenated sequence Ŝc.

▶ Example 20. Consider the marked string Ŝ = ab̂ab̂ĉab̂abĉbcb̂cc of length 15. In Step 1, we
find an alternating a-run S[1, 3] of weight three, an alternating b̂-run S[2, 4] of weight three,
an alternating a-run S[6, 8] of weight three, an alternating-mixed b-run S[7, 13] of weight
seven, and an alternating-mixed c-run S[10, 14] of weight five. Then, in Step 2, we select
M = {S[1, 3], S[6, 8], S[10, 14]} whose total weight is 11. Finally, we delete four characters
S[2], S[7], S[11], and S[13] from Ŝ, and obtain Ŝc = aab̂ĉaabĉccc = a2b̂ĉa2bĉc3.

To obtain an upper bound on |ALG3(S)|, we introduce the following algorithm ALG3’:

Algorithm 5 A high-level description of our algorithm ALG3’.

Input: The marked string Ŝ of S over the alphabet Σ ∪ Σ̂.
Output: A run subsequence ALG3′(Ŝ) of Ŝ.

1: Execute the concatenation operation for marked strings and obtain the concatenated
sequence Ŝc of Ŝ.

2: For each mixed σ-run in Ŝc, replace every σ̂ with σ.
3: For each σ ∈ Σ, select the leftmost longest σ-run in the sequence obtained in the previous

step.
4: Output the concatenation of all the selected longest runs.

Note that the replacement σ̂ in the second step of ALG3’ does not create a new σ-run,
but only increases the length of the σ-run which originally appears in Ŝc.
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▶ Example 21. If the concatenated sequence is Ŝc = a2b̂ĉa2bĉc3, then we replace ĉ in the
rightmost mixed run, obtain a2b̂ĉa2bc4, and finally output a2bc4 of length seven. Recall that
an optimal solution is OPT (S) = a4b2c3 of length nine.

Using arguments very similar to the proof of Lemma 14, we obtain the following lemma:

▶ Lemma 22. For any input S and its marked string Ŝ, the following inequalities hold:
1. |ALG3(S)| ≥ |ALG3′(Ŝ)|;

2. |ALG3(S)| ≤ |ALG3′(Ŝ)|.

Recall that the optimal algorithm OPT deletes the number |OPT (S)| of characters from
the input string S. In the following, we show that, given the marked string Ŝ of S, the
number |ALG3′(Ŝ)| of characters deleted by the worse algorithm ALG3’ from Ŝ is bounded
above by k+4

4 |OPT (S)| if k is even, and k+3
4 |OPT (S)| if k is odd.

We first consider the case k = 2:

▶ Lemma 23. Suppose that k = 2. Then, for S and its marked string Ŝ, the following
inequality holds:

|ALG3′(Ŝ)| ≤ 3
2 |OPT (S)|.

Proof. We investigate the concatenation operation for marked strings. Consider a marked
symbol σ̂i. Assume that σi ̸= σj . Suppose that the marked string Ŝ includes a substring
σj σ̂iσj . Then, even if the middle character σ̂i is deleted in the concatenation operation
for marked strings, this deletion of σ̂i does not increase the number of deleted characters
compared to the number of deleted characters by the optimal algorithm. Therefore, we
assume that σ̂i remains in the concatenated sequence Ŝc after the concatenation operation for
marked strings. Note that Ŝ does not include a substring σj σ̂iσj σ̂i. The reason is as follows.
The rightmost σ̂i implies that the optimal algorithm deletes the rightmost σi, but if it is not
deleted, then the length of the optimal solution increases by one, which is a contradiction.
One sees that it is enough to count the deleted characters in OPT (S) independently within
substrings of length three or four in Ŝ, since here we assume that k = 2.

Suppose that Ŝ includes a substring σ̂iσj σ̂i. If the middle σj is deleted, then σ̂2
i is

obtained by the concatenation operation for marked strings. ALG3’ deletes those two
σ̂i’s in the third step. In other words, ALG3’ deletes one character in OPT (S) per two
marked characters in OPT (S) (i.e., 1/2 in OPT (S) per one in OPT (S)).
Suppose that Ŝ includes a substring σj σ̂iσjσi. If the right σj is deleted, then we obtain
σj σ̂iσi and the middle σ̂i is replaced by σi in the second step of ALG3’. Here, we can
see that ALG3(Ŝ) misses one σj but adds one σi, i.e., the number of deleted characters
remains the same for the substring.

In summary, ALG3’ deletes one character in OPT (S) for two marked characters in OPT (S).
That is, ALG3’ deletes possibly all the marked characters in OPT (S), and in addition, at
most 1

2 |OPT (S)| nonmarked characters in total. From these considerations, the upper bound
on the number of deleted characters of ALG3’ can be calculated as follows:

|ALG3′(Ŝ)| ≤ |OPT (S)| + 1
2 |OPT (S)| = 3

2 |OPT (S)|. (10)

◀

Next, we obtain the following lemma for k = 3, whose proof appears in Appendix B.

WABI 2025
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▶ Lemma 24. Suppose that k = 3. Then, for S and its marked string Ŝ, the following
inequality holds:

|ALG3′(Ŝ)| ≤ 3
2 |OPT (S)|.

Finally, we show the case k ≥ 4:

▶ Lemma 25. Suppose that k ≥ 4. Then, for S and its marked string Ŝ, the following
inequality holds:

|ALG3′(Ŝ)| ≤
⌊

k
2
⌋

+ 2
2 |OPT (S)|.

Proof. We count the deleted characters that appear in OPT (S), during the concatenation
operation for marked strings. Note that if Ŝ includes a substring consisting of at least two
consecutive marked characters, then the substring may partition some σ-run in OPT (S) into
the left σ-run and the right σ-run in Ŝ, and the length of the shorter σ-run is at most ⌊k/2⌋.

Now we observe the marked string Ŝ that includes a substring σσ̂bσ̂bσ̂b · · · σ̂bσ̂σ′. Suppose
that σ = b and σ′ = b in the substring. Then, all σ̂’s are deleted in the concatenation
operation for marked strings since the alternating b-run is longer than the alternating σ̂-run.
Here, the number of deleted characters by the concatenation operation remains the same
as that by the optimal algorithm. If σ ≠ b or σ′ ̸= b, then all b’s in σ̂bσ̂bσ̂b · · · σ̂bσ̂ can be
deleted by the concatenation operation for marked strings and the σ̂-run is produced, i.e.,
characters in OPT (S) can be additionally deleted by ALG3’.

Suppose that the length of the produced σ̂-run by the concatenation operation for marked
strings is p. This implies that p − 1 b’s that appear in the optimal solution are deleted
while p σ̂’s remain in the concatenated sequence Ŝc obtained in the first step of ALG3’.
Suppose that after the first step of ALG3’, we obtain the concatenated sequence Ŝc.
Moreover, suppose that Ŝc includes the σ̂-run of length at least two. Then, Ŝc possibly
includes a substring σp1

0 σ̂pσp2
0 for p ≥ 2. Namely, we can see that the σ0-run of length

p1 + p2 is divided into two runs of length p1 and p2 by the σ̂-run of length p ≥ 2. Recall
that in the third step ALG3’ selects the longest σ0-run. That is, if p1 ≤ p2, then p1
characters are deleted; otherwise, p2 characters are deleted by ALG3’. From p1 + p2 ≤ k,
at most ⌊k/2⌋ characters are deleted if the length of the σ̂-run is at least two.

In summary, the number of characters deleted from OPT (S) in Ŝ is one for every one single
σ̂1

1 , and ⌊k/2⌋ for every one substring of consecutive marked characters σ̂1 · · · σ̂p for p ≥ 2.
Suppose that Ŝc includes r1 single marked characters whose left and right characters are

not marked, and r2 substrings of at least two consecutive marked characters σ̂1 · · · σ̂p. Note
that r1 + 2r2 ≤ |OPT (S)|, and now we assume that k ≥ 4. Hence, we obtain the following
inequality on the number of characters deleted by ALG3’ from the marked string Ŝ:

|ALG3′(Ŝ)| ≤ |OPT (S)| + r1 +
⌊

k

2

⌋
· r2 ≤ |OPT (S)| + 1

2 ·
⌊

k

2

⌋
(r1 + 2r2)

≤
⌊

k
2
⌋

+ 2
2 · |OPT (S)|

This completes the proof. ◀

From Lemmas 22, 23, 24 and 25, we obtain the following theorem:

▶ Theorem 2. k-MRSD can be approximated in linear time within a factor of (k + 4)/4 for
even k, and (k + 3)/4 for odd k.

Finally, we can show that the analyses on the approximation ratios of (k + 4)/4 and
(k + 3)/4 are strictly tight. For details, the reader is referred to Appendix D.
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A Proof of Lemma 11

▶ Lemma 11. The summation of yi, zi satisfies the following inequality:

k∑
i=0

yi ≤ n0 + n1 +
k∑

i=0
zi.

Proof. Note that
∑k

i=0 yi = |Λ′
3| and

∑k
i=0 zi = |Λ′′

3 |. Moreover, n0 + n1 = |Λ1|. Therefore
it is sufficient to show |Λ′

3| ≤ |Λ1| + |Λ′′
3 | = |Λ1 ∪ Λ′′

3 |.
Then we design a mapping from Λ′

3 to Λ1 ∪ Λ′′
3 as follows: Consider a symbol s ∈ Λ′

3.
Since s is a bad symbol, the algorithm chooses an s-run in a bad segment sts with t ̸= s.
Then we know that t in this bad segment sts must be in ALG1(S′). Otherwise, the local
operation-1 is applicable to ALG1(S′), which contradicts Step 4 of ALG1. If t is unique, then
we maps s to t, which is called the Case-1 mapping. Now, we can assume t is not unique.

Since t is in ALG1(S′) and t is not unique, then t must be in Λ2 ∪ Λ3 since, otherwise,
if t is in Π, then a t-run of length two must be chosen in ALG1(S′). If t is in Λ′′

3 , then we
map s to t, which is called the Case-2 mapping. Otherwise, t ∈ Λ2 ∪ Λ′

3 and thus the length
of t in ALG1(S′) is exactly one. Note that t is not unique, and the local operation-2 is not
applicable to ALG1(S′). So, there exists another t such that it is in a bad segment wtw

where a w-run of length two is chosen by the algorithm. Therefore w ∈ Λ′′
3 and we map s to

w, which is called the Case-3 mapping.
Then we prove that the mapping is injective and we are done. Suppose s1, s2 are two

distinct symbols in Λ′
3 such that they are mapping to the same symbol w ∈ Λ1 ∪ Λ′′

3 . If w is
an unique symbol, then s1, s2 are mapping to w by the Case-1 mapping. That is, s1ws1 and
s2ws2 are two substrings of S′, which is impossible since s1 ≠ s2 and w is unique. So, we
can assume w is not unique, i.e., w ∈ Λ′′

3 and s1, s2 are mapping to w by the Case-2 mapping
or the Case-3 mapping.

The first case is that both s1, s2 are mapping to w by the Case-2 mapping. Then it
indicates s1ws1 and s2ws2 are two bad segments in S′ where w is in Λ′′

3 . However, this
case is impossible since two w-runs in ALG1(S′) must come from a bad segment associated
with w.

The second case is that exactly one of s1, s2 maps to w by the Case-2 mapping and the
other one maps to w by the Case-3 mapping. Without loss of generality, we assume that s1
and s2 map to w by the Case-2 and Case-3 mapping, respectively. Recall that in the bad
segment s1ws1, the symbol w is in Λ′′

3 . So, there is a substring ws1ws1 or s1ws1w containing
two bad segments in S′ such that the w-run of length two is in ALG1(S′). By symmetry,
we consider the substring ws1ws1. Since s2 maps to w by Case-3 mapping, s2s1s2 is the
substring such that an s1 and an s2 are in ALG1(S′), which leads to a contradiction since
s1 ∈ Λ′

3.
The remaining case is that both s1, s2 map to w by the Case-3 mapping. In this case,

there exist two substrings s1ws1 and s2ws2 in S′ and w ∈ Λ′′
3 . However, this is impossible

since two w-runs must come from a bad segment of w, which completes the proof. ◀

B Proof of Lemma 24

▶ Lemma 24. Suppose that k = 3. Then, for S and its marked string Ŝ, the following
inequality holds:

|ALG3′(Ŝ)| ≤ 3
2 |OPT (S)|.
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Proof. Consider a marked symbol σ̂i and assume that σi ≠ σj again. As before, we consider
the case where σ̂i remains in the concatenated sequence Ŝc after the concatenation operation
for marked strings. Note that Ŝ does not include a substring σj σ̂iσj σ̂iσj σ̂i. The reason is
the same as the previous: The rightmost σ̂i implies that the optimal algorithm deletes the
rightmost σi, but if the rightmost σi is not deleted, then the length of the optimal solution
increases by one, which is a contradiction.

Suppose that Ŝ includes a substring σ̂iσj σ̂i. If the middle σj is deleted, then σ̂2
i is obtained

by the concatenation operation for marked strings, and ALG3’ deletes two characters σ̂2
i

in the third step. In other words, ALG3’ deletes one character in OPT (S) per two marked
characters in OPT (S).
Suppose that Ŝ includes a substring σj σ̂iσjσi. If the right σj is deleted, then we obtain
σj σ̂iσi and the middle σ̂i is replaced by σi in the second step of ALG3’. Namely, ALG3′(Ŝ)
misses one σj but adds one σi, i.e., the number of deleted characters remains the same
for the substring.
Suppose that Ŝ includes a substring σj σ̂iσj σ̂iσjσi. If the right two σj ’s are deleted, then
we obtain σj σ̂2

i σi and two σ̂2
i are replaced by σ2

i in the second step of ALG3’. Namely,
ALG3′(Ŝ) misses two σj ’s but adds two σi’s, i.e., the number of deleted characters
remains the same for the substring.

Again, we conclude that ALG3’ deletes at least one character in OPT (S) for two marked
characters in OPT (S). From these considerations, the upper bound on the number of deleted
characters of ALG3’ can be calculated as follows:

|ALG3′(Ŝ)| ≤ |OPT (S)| + 1
2 |OPT (S)| = 3

2 |OPT (S)|. (11)

◀

C Bad examples for Theorem 1

We can provide tight examples for the analysis on the approximation ratios when k = 2 and
k = 3 in Theorem 1.

(i) First, suppose that k = 2. Then, consider the following string S2 = S2
1 ◦ S2

2 ◦ · · · ◦ S2
p of

length 6p for some integer p:

S2 =

substring S2
1︷ ︸︸ ︷

abcabc

substring S2
2︷ ︸︸ ︷

degdeg · · ·
substring S2

p︷ ︸︸ ︷
σ3p−2σ3p−1σ3pσ3p−2σ3p−1σ3p .

Then, an optimal solution is OPT (S2) = a2bcd2eg · · · σ2
3p−2σ3p−1σ3p of length

4p, and a solution of ALG1 is ALG1(S2) = abcdeg · · · σ3p−2σ3p−1σ3p of length 3p

Hence, |ALG1(S2)|/|OPT (S2)| = 4/3.
(ii) Next, suppose that k = 3. Then, the following string S3 = S3

1 ◦ S3
2 ◦ · · · ◦ S3

p of length
9p for some integer p is a tight example:

S3 =

substring S3
1︷ ︸︸ ︷

abcabcabc

substring S3
2︷ ︸︸ ︷

degdegdeg · · ·
substring S3

p︷ ︸︸ ︷
σ3p−2σ3p−1σ3pσ3p−2σ3p−1σ3pσ3p−2σ3p−1σ3p .

Then, an optimal solution is OPT (S3) = a3bcd3eg · · · σ3
3p−2σ3p−1σ3p of length 5p,

and an solution of ALG1 is the same as ALG1(S3). Therefore, |ALG1(S3)|/|OPT (S3)| =
5/3.

WABI 2025



3:20 Longest Run Subsequence and Complementary Minimization Problems

(iii) For the case k ≥ 4, the approximation-ratio analysis in Theorem 1 is almost tight,
but there is a slight gap. Suppose that k ≥ 4. Then, consider the following string
Sk = Sk

1 ◦ Sk
2 ◦ · · · ◦ Sk

2p of length 6p for some integer 3k:

Sk =

substring Sk
1 of length 3k/2︷ ︸︸ ︷

aabaab · · · aab

substring Sk
2 of length 3k/2︷ ︸︸ ︷

ccbccb · · · ccb · · ·

substring Sk
2p−1 of length 3k/2︷ ︸︸ ︷

σ3p−2σ3p−2σ3p−1σ3p−2σ3p−2σ3p−1 · · · σ3p−2σ3p−2σ3p−1

substring Sk
2p of length 3k/2︷ ︸︸ ︷

σ3pσ3pσ3p−1σ3pσ3pσ3p−1 · · · σ3pσ3pσ3p−1

Then, the following run subsequence OPT (Sk) of length (2k+1)p is an optimal solution:

OPT (Sk) = akckbdkgke · · · σk
3p−2σk

3pσ3p−1

On the other hand, our algorithm ALG2 outputs the following subsequence of length 5p:

ALG2(Sk) = a2bc2d2eg2 · · · σ2
3p−2σ3p−1σ2

3p.

Hence, |ALG2(Sk)|/|OPT (Sk)| = (2k + 1)/5.

D Bad examples for Theorem 2

We can show that the analysis on the approximation ratios in Theorem 2 is tight.
(i) First, suppose that k is even. Then, consider the following string Se = Se

1Se
2 · · · Se

p of
length 2pk for some integer p:

Se =

substring Se
1︷ ︸︸ ︷

a
k
2 b2a

k
2 bk−2

substring Se
2︷ ︸︸ ︷

c
k
2 d2c

k
2 dk−2 · · ·

substring Se
p︷ ︸︸ ︷

σ
k
2
2p−1σ2

2pσ
k
2
2p−1σk−2

2p

Then, the optimal solution OPT (Se) is obtained by deleting 2p characters as follows:

OPT (Se) = akbk−2ckdk−2 · · · σk
2p−1σk−2

2p

On the other hand, our algorithm ALG3 selects the leftmost longest σi-run for each
i ∈ {1, . . . , 2p} and thus ALG3(Se) is as follows:

ALG3(Se) = a
k
2 bk−2c

k
2 dk−2 · · · σ

k
2
2p−1σk−2

2p

The total number of characters deleted from Se is k+4
2 · p. Hence,

|ALG3(Se)|/|OPT (Se)| = (k + 4)/4.
(ii) Next, suppose that k is odd. Then, consider the following string So = So

1So
2 · · · So

p of
length 2pk for some integer p:

So =

substring So
1︷ ︸︸ ︷

a
k+1

2 b2a
k−1

2 bk−2

substring So
2︷ ︸︸ ︷

c
k+1

2 d2c
k−1

2 dk−2 · · ·

substring So
p︷ ︸︸ ︷

σ
k+1

2
2p−1σ2

2pσ
k−1

2
2p−1σk−2

2p

Very similarly, we obtain the following equality: |ALG3(So)|/|OPT (So)| = (k + 3)/4.
As a result, the analysis of the approximation ratios in the proof of Theorem 2 is tight.
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