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Keywords: Graph orientation, Approximation algorithm, Hard-ness of approximation.1. IntrodutionAn orientation of an undireted graph is an assignment ofa diretion to eah of its edges. Graph orientation is a well-studied area of graph theory and ombinatorial optimizationand thus a large variety of objetive funtions have beenonsidered so far. The objetive funtion of the presentpaper is the maximization of the minimum outdegree. Itis losely related to the lassi job sheduling on parallelmahines. In the parallel mahine sheduling senario, ourproblem an be regarded as the restrited assignment variantof the mahine overing problem [18℄, where its goal isto assign jobs to parallel mahines suh that eah mahineis overed as muh as possible. In the following, we �rstde�ne several terminologies and our objetive funtion, thendesribe related work, and summarize our results.Problem de�nition. Let G = (V;E;w) be a given undi-reted, edge-weighted graph with vertex set V and edgeset E whose weights are numbers spei�ed by a funtion w.An orientation � of G is de�ned to be any funtion on E ofthe form � : fu; vg 7! f(u; v); (v; u)g, i.e., an assignmentof a diretion to eah undireted edge fu; vg in E. Givenan orientation � of G, the weighted outdegree d�(v) ofa vertex v 2 V is de�ned as the total weight of alledges leaving v, i.e., d�(v) = P fu;vg2E:�(fu;vg)=(v;u) w(fu; vg),and the minimum weighted outdegree Æ�(G) is de�ned by



Æ�(G) = minv2V fd�(v)g.In this paper we deal with the problem of �nding an ori-entation of the input graph suh that the minimum weightedoutdegree is maximum. We all this problem MaximumMinimum Weighted Outdegree Graph Orientation Problem(MAXMINO for short): The input is an undireted, edge-weighted graph G = (V;E;w) with w : E ! Z+, whereZ+ denotes the set of positive integers, and the objetiveis to �nd an orientation �� of G whih maximizes Æ�(G)over all possible orientations � of G. Suh an orientationis alled a max-min orientation of G, and the orrespondingvalue Æ��(G) is denoted by OPT (G). The speial ase ofMAXMINO where all edge weights of the input graph areequal to 1 is referred to as unweighted MAXMINO.Throughout the paper, we use the following notations:n = jV j, m = jEj, and W =Pe2E w(e) for the input G.Furthermore, wmax and wmin denote the maximum andminimum weights, respetively, among all edges in E. Forany v 2 V , the (unoriented) weighted degree of v, denotedby d(v), is the sum of all weights of edges inident to v, and� = maxv2V fd(v)g is the maximum (unoriented) weighteddegree among all verties in G. Also for a (�xed) v 2 V ,we all jffu; vg 2 Egj (i.e., the number of edges inidentto v) the (unoriented) unweighted degree of v, and denoteit by deg(v). We also all maxv2V deg(v) the (unoriented)unweighted degree of G, both of whih will be used to fouson the topologial struture of the graph.We say that an algorithm A is a �-approximation algo-rithm for MAXMINO or that A's approximation ratio isat most �, if OPT (G) � � � A(G) holds for any inputgraph G, where A(G) is the minimum weighted outdegreein the orientation returned by A on input G.Related work. MAXMINO studied in the urrent workis losely related to the restrited assignment variant ofthe mahine overing problem, whih is often alled theSanta Claus problem [4℄, [5℄, [8℄, [12℄: Santa Claus has mgifts (orresponding to jobs, and to edges in MAXMINO)that he wants to distribute among n kids (orrespondingto mahines, and to verties in MAXMINO). Some giftmay be worth $100 but another may be not so expensive,and some kids do not want some of the gifts whatsoever(i.e., its value is 0 for the kids). The goal of Santa Clausis to distribute the gifts in suh a way that the leastluky kid is as happy as possible. In addition, MAXMINOhas the following restrition (whih might be strong andsomehow strange in the Santa Claus senario): Every giftis of great value only to exatly two kids and thus it mustbe delivered to one of them. For the Santa Claus problem,Golovin [12℄ provided an O(pn)-approximation algorithmfor the restrited ase where the value of eah gift belongsto f1; kg for some integer k. Bansal and Sviridenko [4℄onsidered the general value ase and showed that a ertainlinear programming relaxation an be used to design an

O(log logm= log log logm)-approximation algorithm, whileBezakova and Dani [5℄ already showed that the general aseis NP-hard to approximate within ratios smaller than 2.Another objetive funtion studied for the graph orienta-tion problem is that of minimizing the maximum weightedoutdegree (MINMAXO), also known as Graph Balan-ing [1℄, [2℄, [3℄, [7℄, [13℄, [17℄: Given an undireted graphwith edge weights, we are asked to assign a diretion toeah edge so that the maximum outdegree is minimized. Itis obvious that MINMAXO is generally NP-hard. Asahiroet al. [2℄ showed that it is still weakly NP-hard for outer-planar graphs, and strongly NP-hard for P4-bipartite graphs.Fortunately, however, they also showed [2℄ that MINMAXOis tratable if the input is limited to trees or even to atusgraphs. Note that the lass of atus graphs is a maximalsubset of the lass of outerplanar graphs and the lass of P4-bipartite graphs, and a minimal superset of the lass of trees.Very reently, Ebenlendr et al. [7℄ designed a polynomial-time 1:75-approximation algorithm for the general weightedase, and Asahiro et al. [1℄ showed that MINMAXO anbe approximated within an approximation ratio of 1:5 inpolynomial-time if all edge weights belong to f1; 2g. As forinapproximability, it is known that MINMAXO is NP-hardto approximate within approximation ratios smaller than 1:5even for this restrited f1; 2g-ase [1℄, [7℄.Our results. In this paper we study the omputationalomplexity and (in)approximability of the mahine overingproblem from the viewpoint of the graph based problem, i.e.,graph orientation. In Setion 2, we prove that MAXMINOis strongly NP-hard and annot be approximated within aratio of minf2; wmaxwmin g � � for any onstant � > 0 in poly-nomial time unless P=NP, even if all edge weights belongto fwmin; wmaxg, every vertex has unweighted degree atmost three, and the input graph is bipartite and planar. Asmentioned above, although MAXMINO imposes a strongrestrition on the Santa Claus problem, unfortunately it isstill hard.Setion 3 �rst onsiders the unweighted MAXMINO prob-lem. We an obtain an optimal orientation algorithm whihruns in O(m3=2 � logm � log2�) time for the speial ase inwhih all edge weights are equal to 1. Here, it is important tonote that Golovin [12℄ already laimed that the unweightedase of MAXMINO (more preisely, the Santa Claus prob-lem) an be solved in polynomial time, but no proof ofthis laim has ever appeared as far as the authors know.Our ontribution here is to provide the non-trivial, ef�ientrunning time with its expliit proof. Then, we observe thatour approah yields an exat algorithm for the general aseof MAXMINO whose running time is polynomial wheneverthe number of edges having weight larger than wmin is atmost logarithmi in the number of verties. In Setion 4,this ef�ient algorithm for the unweighted MAXMINO alsogives us a simple wmaxwmin -approximation algorithm running in



the same time for general (weighted) ase of MAXMINO,i.e., it always outputs an orientation �0 of G whih satis�esOPT (G) � wmaxwmin � Æ�0(G). This simple approximationalgorithm is best possible for the ase that the weights ofedges belong to fwmin; wmaxg with wmax � 2wmin sinethe lower bound of approximation ratios is minf2; wmaxwmin gdesribed above.In the �eld of ombinatorial optimization, muh work isoften devoted to seek a subset of instanes that is tratableand as large as possible. For example, if the input graph Gis a tree, then OPT (G) is always 0 beause the numberof verties is larger than the number of edges, and in anyorientation of G, at least one vertex must have no outgoingedges. Also, for the ase of yles, MAXMINO is quitetrivial sine the lokwise or ounterlokwise orientationalong the yle gives us the optimal value of wmin. Onthe other hand, the lass of planar graphs is too largeto allow a polynomial-time optimal algorithm (under theassumption of P6=NP). Hene, our goal in Setion 5 is to�nd a polynomially solvable subset between trees and planargraphs. Then, we show that MAXMINO remains in P evenif we make the set of instanes so large that it ontains thelass of atus graphs.2. Hardness resultsIn this setion, we show the MAXMINO problem isstrongly NP-hard even if all the edge weights belong tofwmin; wmaxg for any integers wmin < wmax and the inputgraph is bipartite and planar. The proof is by a redutionfrom AT-MOST-3-SAT(2L).AT-MOST-3-SAT(2L) is a restrition of 3-SAT whereeah lause ontains at most three literals and eah literal(not variable) appears at most twie in a formula. It anbe easily proved that AT-MOST-3-SAT(2L) is NP-hard byusing problem [LO1℄ on p. 259 of [9℄.First, we pik any �xed integers for wmin and wmaxsuh that wmin < wmax. Given a formula � of AT-MOST-3-SAT(2L) with n variables fv1; : : : ; vng and m lausesf1; : : : ; mg, we then onstrut a graph G� inludinggadgets that mimi (a) variables and (b) lauses. To de�nethese, we prepare a gadget onsisting of a yle of 3 vertiesand 3 edges (i.e., a triangle) where eah edge of the ylehas weight wmax. We all this a triangle gadget. Apart fromthese triangle gadgets, we de�ne gadgets for (a) variablesand (b) lauses: (a) Eah variable gadget orresponding toa variable vi onsists of two verties labeled by vi and viand one edge fvi; vig between them. The weight of fvi; vigis wmax. By the de�nition of AT-MOST-3-SAT(2L), someliterals (say vi for example) do not our (or may ouronly one). In suh a ase, we attah a triangle gadget to thevariable gadget by adding two edges (one edge) of weightwmin that onnets vertex vi and two different verties (onevertex) of the triangle gadget. (b) Eah lause gadget onsists

of one representative vertex labeled by j , orresponding tolause j of �, and a triangle gadget onneted to this j-vertex by an edge of weight wmin. The representative vertexj is also onneted to at most three verties in the literalgadgets that have the same labels as the literals in the lausej , by edges of weight wmin. For example, if 1 = x _ yappears in �, then vertex 1 is onneted to verties x andy. (See Figure 1.) We have the following lemma.Lemma 1: For the redued graphG�, the following holds:(i) OPT (G�) � minf2wmin; wmaxg if � is satis-�able.(ii) OPT (G�) � wmin if � is not satis�able.Proof: First, if Æ�(G) > wmin for an optimal orien-tation �, then we an assume that eah triangle gadget isoriented in suh a way that the triangle forms a diretedyle in an optimal orientation, whih guarantees that theminimum weighted outdegree among those verties belong-ing to the triangle is at least wmax (otherwise, it has a vertexwhose weighted outdegree is at most wmin). Due to thisyle orientation, we an also assume that edges that onnettriangle gadgets to other verties are oriented towards thetriangle gadgets in the optimal orientation.Now we prove (i). Suppose that there is a satisfyingtruth assignment � for the formula �. From � , we onstrutan orientation with OPT (G�) � minf2wmin; wmaxg. Ifvi = true in � , the edge fvi; vig is oriented from vi tovi; otherwise, from vi to vi. At this moment, the weightedoutdegree of verties assoiated with the literals of true andfalse assignments is wmax and 0, respetively. (We allthe verties assoiated with literals of true (resp., false)assignments true (resp., false) verties. For example, if avariable x = false in a truth assignment, then the upperleftmost vertex x is alled a false vertex and the seondleftmost vertex x is alled a true vertex in Figure 1.) Eahfalse vertex has one or two edges onneted to lauseverties, and in ase a false vertex is onneted to one lausevertex, then it is onneted to a triangle gadget. We thenorient suh edges towards the lause verties and trianglegadgets, whih make the weighted outdegree of eah falsevertex 2wmin. Thus the weighted outdegree of eah vertexin a variable gadget is at least 2wmin. Eah lause vertexhas at least one edge onneted to a true vertex due to thetruth assignment. We orient this edge towards the true vertex,whih makes the weighted outdegree of the lause vertex atleast 2wmin, beause it has an edge onneted to a trianglegadget. Hene, the weighted outdegree of every vertex is atleast minf2wmin; wmaxg, whih shows (i).Next, we prove (ii) by showing that if the graph G�has an orientation whose minimum weighted outdegreeis at least minf2wmin; wmaxg, then � is satis�able byonstruting the satisfying truth assignment. If an edge inthe ith variable gadget vi is oriented from vi to vi, then weassign vi = true; otherwise, vi = false . Then two edgesbetween a vertex assigned with false and its two adjaent
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Figure 1. Redution from AT-MOST-3-SAT(2L) (Solid and dotted edges have weight wmax and wmin, respetively.)lause verties must be oriented towards the lause verties.(Otherwise, the weighted outdegree of the false vertex is atmost wmin, whih ontradits the assumption.) Every lausevertex is onneted with the variable and triangle gadgets.As mentioned above, every edge between a lause vertex andits triangle gadget an be assumed to be oriented towardsthe triangle gadget. It follows that for eah lause vertex,there must be at least one edge direted towards the lausevertex from a vertex v in a variable gadget, and v must bea true vertex. This means that the above truth assignmentsatis�es all the lauses in �. �From Lemma 1, we immediately obtain the followingtheorem.Theorem 2: MAXMINO is strongly NP-hard even if theedge weights are in fwmin; wmaxg (wmin < wmax). �Also the (un)satis�ability gap of Lemma 1 yields thefollowing theorem.Theorem 3: Even if the edge weights are infwmin; wmaxg, MAXMINO has no pseudo-polynomialtime algorithm whose approximation ratio is smaller thanminf2; wmaxwmin g, unless P = NP. �Similarly, we an show the NP-hardness of MAXMINOfor planar bipartite graphs by almost the same redutionas the above from MONOTONE-PLANAR-ONE-IN-THREE-3-SAT(2L), whih is a variant of AT-MOST-3-SAT(2L),having both the planarity [14℄ and the monotoniity [10℄.ONE-IN-THREE-3-SAT itself is a variant of 3-SAT prob-lem whih asks whether there exists a truth assignmentto the variables so that eah lause has exatly one trueliteral (and thus exatly two false literals) [16℄. The rea-son why we use ONE-IN-THREE-3-SAT instead of AT-MOST-3-SAT is to bound the unweighted degrees of theonstruted graphs. While the above redution from AT-MOST-3-SAT(2L) guarantees that the unweighted degreesof onstruted graphs are bounded by four, we an boundthe unweighted degrees of onstruted graph from ONE-IN-THREE-3SAT(2L) by three. In the new redution, we donot attah triangle gadgets to lause verties, whih makesthe unweighted degrees of lause verties three, and One-In-Three satis�ability guarantees that eah lause vertex has

two outgoing edges in an optimal MAXMINO solution.The planarity means that the graph onstruted from aninstane CNF, in whih two verties orresponding to avariable and a lause are onneted by an edge if the variableours (positively or negatively) in the lause, is planar.The monotoniity means that in an input CNF formula eahlause ontains either only positive literals or only negativeliterals. PLANAR-ONE-IN-THREE-3-SAT is shown to beNP-omplete in [15℄.By applying an operation used in [2℄, we an transforman instane of PLANAR-ONE-IN-THREE-3-SAT into one ofMONOTONE-PLANAR-ONE-IN-THREE-3-SAT. Moreover,by applying another operation used in the same paper [2℄,we an transform an instane of MONOTONE-PLANAR-ONE-IN-THREE-3-SAT into MONOTONE-PLANAR-ONE-IN-THREE-3-SAT(2L). This implies that the onstrutedgraph is planar and bipartite and its unweighted degree is atmost three. (To preserve the bipartiteness, we need to usebipartite gadgets, e.g., square gadgets, instead of trianglegadgets.)Theorem 4: MAXMINO is strongly NP-hard even if theedge weights are in fwmin; wmaxg for integers wmin <wmax and the input graph is bipartite and planar in whihthe unweighted degree is bounded by three. �Theorem 5: Even if the edge weights are infwmin; wmaxg and the input graph is bipartite andplanar in whih the unweighted degree is bounded by three,MAXMINO has no pseudo-polynomial time algorithmwhose approximation ratio is smaller than minf2; wmaxwmin g,unless P=NP. �This result is tight in a sense, beause if the unweighteddegree of the input graph is bounded by two (i.e., yles ortrees), obviously MAXMINO an be solved in linear time.3. An exat algorithm for unweighted asesMAXMINO is losely related to the problem of omputinga maximum �ow in a �ow network with positive edge a-paities. Indeed, maximum-�ow-based tehniques have beenused in [3℄ to solve the analogous problem of omputing an
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e4ap = 1s tap = 1 ap = qFigure 3. Network NG onstruted from G of Figure 2edge orientation whih minimizes the maximum outdegree ofa given unweighted graph (MINMAXO) in polynomial time.In this setion, we extend the results of [3℄ by showing howa maximum �ow-algorithm an be used to ef�iently solveunweighted MAXMINO.For any input graph G = (V;E) to unweightedMAXMINO, let NG = (VG; EG) be the direted graph withvertex set VG and edge set EG de�ned by:VG = E [ V [ fs; tg;EG = �(s; e) j e 2 E	 [ �(v; t) j v 2 V 	 [�(e; vi); (e; vj) j e = fvi; vjg 2 E	;and for any integer q 2 f0; 1; : : : ;�g, let NG(q) =(VG; EG; apq) be the �ow network obtained by augmentingNG with edge apaities apq, where:apq(a) = 8><>: 1; if a = (s; e) with e 2 E;1; if a = (e; v) with e 2 E; v 2 V ;q; if a = (v; t) with v 2 V:See Figure 2 and Figure 3 for an example of the originalgraph G and the orresponding network NG, respetively.Let F (q) be an integral maximum direted �ow1 from ver-tex s to vertex t in NG(q). Then, for eah e = fvi; vjg 2 E,either zero or one unit of �ow in F (q) passes through the1. Sine all edge apaities are integers, we may assume by the integralitytheorem (see, e.g., [6℄) that the �ow along eah edge in F (q) found by thealgorithm in [11℄ is an integer.

orresponding vertex e in VG, and thus at most one of thetwo edges (e; vi) and (e; vj) is assigned one unit of �ow.This indues an orientation �F (q) of G based on F (q) asfollows: If the �ow in F (q) from vertex e to vertex viequals 1 then set �F (q)(e) := (vi; vj); else if the �owin F (q) from e to vj equals 1 then set �F (q)(e) := (vj ; vi);else set �F (q)(e) arbitrarily.Let f(q) denote the value of a maximum direted �owfrom vertex s to vertex t in NG(q). Then:Lemma 6: For any q 2 f0; 1; : : : ;�g, f(q) � q � n.Proof: The sum of all edge apaities of edges leadinginto t in NG(q) is q � n. Clearly, the value of the maximum�ow in NG(q) annot be larger than this sum. �Lemma 7: For any q 2 f0; 1; : : : ;�g, f(q) = q �n if andonly if OPT (G) � q.Proof:=)) Suppose that f(q) = q � n and onsider the maximum�ow F (q) de�ned above. For eah v 2 V , exatly q unitsof �ow leave the orresponding vertex v in VG beause theedge apaity of (v; t) is q and there are n suh verties.This implies that q units of �ow enter v, whih is onlypossible if there are q edges of the form (e; v) in EG thathave been assigned one unit of �ow eah. Therefore, theindued orientation �F (q) ensures that d�F (q) (v) � q forevery v 2 V , whih yields OPT (G) � q.(=) Suppose that OPT (G) � q and let � be a max-min orientation of G. Let F 0 be the following direted �owfrom s to t in NG(�):F 0(a) = 8>>>>>>>><>>>>>>>>:
1; if a = (s; e) with e 2 E;1; if a = (e; vi) with e = fvi; vjg 2 Eand �(e) = (vi; vj);0; if a = (e; vi) with e = fvi; vjg 2 Eand �(e) = (vj ; vi);d�(v); if a = (v; t) with v 2 V:For every v 2 V , the �ow in F 0 along the edge (v; t)in NG(�) is d�(v) � OPT (G) � q. By reduing eahsuh edge �ow to q, one obtains a direted �ow whihobeys the (striter) edge apaity onstraints of the �ownetwork NG(q) and has �ow value n �q. Thus, there exists amaximum direted �ow from s to t inNG(q) with value q�n,so f(q) � q �n. It follows from Lemma 6 that f(q) = q �n.� Lemmas 6 and 7 suggest the algorithm for unweightedMAXMINO named Algorithm Exat-1-MaxMinO.Theorem 8: Exat-1-MaxMinO solves unweightedMAXMINO in O(m3=2 � logm � log2�) time. �Proof: The orretness of Exat-1-MaxMinO is guar-anteed by Lemmas 6 and 7. For any q 2 f0; 1; : : : ;�g, toompute a maximum �ow in the �ow network NG(q) takesO(m3=2 � logm � log�) time with the algorithm of Goldberg



Algorithm 1 Algorithm Exat-1-MaxMinO1: Construt NG.2: Use binary searh on q in the interval f0; 1; : : : ;�g to�nd the integer q suh that f(q) = q �n and f(q+1) <(q + 1) � n.3: Compute F (q) as a maximum direted �ow from s to tin NG(q).4: Return �F (q).and Rao [11℄ beause NG(q) ontains m+ n+ 2 = O(m)verties and 3m + n = O(m) edges and the apaityof eah edge in NG(q) is upper-bounded by �. Algo-rithm Exat-1-MaxMinO an therefore be implemented torun in O(m3=2 � logm � log2�) time. �Finally, we outline how Exat-1-MaxMinO an be ap-plied to solve weighted MAXMINO. Let X be the set ofall edges in E with weight larger than wmin. First modifythe �ow network NG(q) to set apq(a) = dw(e)=wmine:for every edge a 2 EG of the form a = (s; e). Then,run Exat-1-MaxMinO a total of 2jXj times while testingall possible ways of setting the apaity of exatly oneof (e; vi) and (e; vj) in NG(q) to w(e) and the other to 0for eah e 2 X , using binary searh on q in the intervalf0; 1; : : : ; dW=neg, and selet the best resulting orientation.The asymptoti running time beomes the same as that ofExat-1-MaxMinO multiplied by 2jXj and with an inreasedue to the larger interval for the binary searh on q and theedge apaities being upper-bounded by maxfwmax;W=nginstead of �.Theorem 9: Weighted MAXMINO an be solved inO(m3=2 � logm � log(wmax+W=n) � log(W=n) � 2jXj) time,where X = fe 2 E j w(e) > wming.Corollary 1: If jX j = O(log n) then weightedMAXMINO an be solved in polynomial time. �4. A simple approximation algorithm for gen-eral asesHere, we prove that ignoring the edge weights of the inputgraph and applying Exat-1-MaxMinO on the resultingunweighted graph immediately yields a wmaxwmin -approximationalgorithm for the general ase of the problem. The algorithmis named Approximate-MaxMinO and is listed in Algo-rithm 2.Algorithm 2 Algorithm Approximate-MaxMinO1: Let G0 be the undireted graph obtained from G byreplaing the weight of every edge by 1.2: Apply Algorithm Exat-1-MaxMinO on G0 and let �0be the obtained orientation.3: Return �0.

Theorem 10: Approximate-MaxMinO runs in O(m3=2 �logm � log2�) time and is a wmaxwmin -approximation algorithmfor MAXMINO.Proof: The asymptoti running time of Algo-rithm Approximate-MaxMinO is the same as that of Exat-1-MaxMinO.To analyze the approximation ratio, observe that Æ�(G) �wmin �Æ�(G0) for any orientation � of G beause the weightof any edge in G is at least wmin times larger than itsweight in G0. Similarly, wmax � Æ�(G0) � Æ�(G) for anyorientation � of G. Now, let �0 be the optimal orientationfor G0 returned by Approximate-MaxMinO and let �� bean optimal orientation for G. Note that Æ�0(G0) � Æ��(G0).Thus, Æ�0(G) � wmin � Æ�0(G0) � wmin � Æ��(G0) �wminwmax � Æ��(G) = wminwmax � OPT (G). �5. An exat algorithm for atus graphsIn this setion, we present a polynomial time algorithmwhih obtains optimal orientations for atus graphs. Agraph is a atus if every edge is part of at most one yle. Tothis end, we introdue vertex weight �G(v) for eah vertexv in a graph G whih is onsidered as 0 in the input graph(we omit the subsript G of �G(v) if it is apparent). Herewe de�ne the notion of weighted outdegree for a vertex ina vertex and edge weighted graph. The weighted outdegreed�(v) of a vertex v is de�ned as the weight of v itself plusthe total weight of outgoing ars of v, i.e.,d�(v) = �(v) + Xfu;vg2E:�(fu;vg)=(v;u) w(fu; vg):In a atus graph, a vertex in a yle is a gate if it is adjaentto any vertex that does not belong to the yle. Note thatthe unweighted degree of a gate is at least three. As for thenumber of gates in a yle, the following is known:Proposition 11 (Proposition 2 in [2℄): In a atus graphG in whih deg(v) � 2 for every vertex v, there alwaysexists a yle with at most one gate.The main part of the proposed algorithm Exat-Catus-MaxMinO is shown in Algorithm 3, whih solves the de-ision version of the problem MAXMINO: Given a numberK, this problem asks whether there exists an orientationwhose value is at least K. We an develop an algorithmfor the original problem MAXMINO by using this algorithmO(log�) times in a binary searh manner on optimal value,whih is upper-bounded by �.The orretness of Exat-Catus-MaxMinO is basedon the following property on optimal orientations for twographs.Proposition 12: Consider two graphsG and G0 that differonly on their vertex weights. If �G(v) � �G0(v) for everyvertex v, then OPT (G) � OPT (G0) holds. �



Algorithm 3 Algorithm Exat-Catus-MaxMinO1: repeat2: For a vertex v,3: if �(v) + d(v) < K then4: output No and halt.5: else if deg(v) = 1 then6: (let its onneting edge be e = fv; ug)7: if �(v) < K then8: �(e) := (v; u)9: else10: �(e) := (u; v) and inrease �(u) by w(e)11: end if12: Remove v and e.13: else if deg(v) = 2 then14: (let e1 = fp; vg and e2 = fv; qg)15: if �(v)+w(e1) < K and �(v)+w(e2) < K then16: �(e1) := (v; p) and �(e2) := (v; q). Remove v,e1, and e2.17: else if �(v) + w(e1) < K and �(v) + w(e2) � Kthen18: �(e1) := (p; v) and �(e2) := (v; q) and alsoinrease �(p) by w(e1). Remove v, e1, and e2.19: end if20: end if21: until there does not exist a vertex v satisfying either oneof the above onditions22: for all C := hv0; v1; � � � ; v` = v0i that has at most onegate do23: if C does not have a gate then24: �(fvi; vi+1g) := (vi; vi+1) for 0 � i � `� 1.25: Remove C.26: else27: Let v0 be the gate.28: if there exists a vertex vj , j 6= 0 satisfying �(vj) �K in C then29: Assign �(fvi; vi+1g) := (vi; vi+1) for 0 �i � j � 1 and �(fvi; vi+1g) := (vi+1; vi) forj � i � `� 1. Inrease �(v0) by w(fv0; v1g) +w(fv0; v`�1g).30: else31: If w(fv0; v1g) > w(fv0; v`�1g) then assign�(fvi; vi+1g) := (vi; vi+1) for 0 � i � ` � 1and inrease �(v0) by w(fv0; v1g), otherwise�(fvi; vi+1g) := (vi+1; vi) for 0 � i � ` � 1and inrease �(v0) by w(fv0; v`�1g).32: end if33: Remove C exept the gate v0.34: end if35: end for36: if the graph is empty then37: output � and halt.38: else39: go bak to line 1.40: end if

Theorem 13: Given a atus graph G and a target K,Exat-Catus-MaxMinO outputs an orientation � suh thatÆ�(G) � K if suh an orientation exists, in polynomial time.Proof: First we estimate the running time. Sine eahof exeutions of repeat loop or for all loop determines thediretion of at least one edge, the total number of times thosesteps are being proessed is bounded by O(m). Also all ofthose steps an be done in O(m) time beause they only�nd a vertex or a yle with testing ertain onditions by aonstant time. Hene the total running time is O(m2). It anbe redued to O(m+ n logn) by a areful implementationof the algorithm, but we omit the details here.Next we show the orretness of the algorithm. Eahexeution that removes some verties and edges from theurrent graph H (lines 12, 16, 18, 25 and 33) may in-rease the weight of a remaining vertex, and then obtainsa modi�ed graph H 0. What we would like to show is thatif OPT (H) � K, then (i) also OPT (H 0) � K, (ii) thedetermined diretions of edges are orret, and so (iii) allthe verties removed at the step have weighted outdegree atleast K. Assume that OPT (H) � K.Lines 3-4: If the ondition is satis�ed, the answer islearly No.Lines 5-12: It holds that �(v)+w(e) � K sine it passesthrough the hek in line 3. In the ase that �(v) < K, if weassign �(e) := (u; v), then the weighted outdegree of v isless than K, whih ontradits the assumption OPT (H) �K. Hene the assignment �(e) := (v; u) is orret and alsothe removed vertex v has weighted outdegree at least K.Also it holds that OPT (H 0) � OPT (H), otherwise, itontradits that OPT (H) is the optimal value.Let us onsider the other ase that �(v) � K. Theweighted outdegree of the removed vertex v is at least�(v) � K in this ase whihever the diretion assigned tothe edge e is. There are two possibilities: We assign either�(e) := (u; v) or �(e) := (v; u). Let the graph obtainedby the former assignment with inreasing �(u) by w(e) beH 0, and let the graph obtained by the latter be H 00. FromProposition 12, we observe that OPT (H 0) � OPT (H 00).If OPT (H 00) � OPT (H), then it holds that OPT (H 0) �OPT (H 00) � OPT (H) for both of the diretions of theedge e. Conversely, the inequality OPT (H 00) < OPT (H)means that the weighted outdegree of the vertex u mustbe augmented by orienting the edge e = fv; ug as (u; v)in the optimal orientation for H , beause, otherwise itontradits that OPT (H) is the optimal value. Thus theassignment �(e) := (u; v) is orret and it holds thatOPT (H 0) � OPT (H) � K.Lines 13-20: If we do not follow the rules here, theweighted outdegree of the proessed vertex would be lessthan K � OPT (H), whih implies the operations in theselines are orret. As a result, the weighted outdegree of theremoved vertex v at line 16 (resp., line 18) is at leastK fromthe assumption that v does not satisfy the ondition of line



3 (resp., line 15), and also OPT (H 0) � OPT (H) � K.Lines 22-35: First of all, at the beginning of this part,it holds that deg(v) � 2 for every vertex v sine it passeslines 5-12. From Proposition 11, we an always �nd a ylehaving at most one gate.Lines 23-25: It is obvious that the verties removedat this step have weighted outdegree at least K beausethey passed lines 13-19. In addition to that it holds thatOPT (H 0) � OPT (H) sine C is a onneted omponentin H and OPT (H) = minfOPT (C); OPT (H 0)g.Lines 27-33: The verties removed in this step all haveweighted outdegree at least K beause of the onditions oflines 13-19. Also the proposed assignment of diretions forthe yle C inreases �(v0) as muh as possible withoutbreaking optimality, and it derives OPT (H 0) � K by asimilar argument as the one used in lines 5-12.By the above disussion, if all the verties are removedwithout answering No, the weighted outdegree of everyvertex by the orientation � is at least K. �From Theorem 13, we an solve MAXMINO for a-tus graphs in polynomial time by using EXACT-CACTUS-MAXMINO as an engine of the binary searh.AknowledgmentsWe thank Tetsuo Shibuya for some inspiring disussions.This work is partially supported by Grant-in-Aid for Si-enti� Researh (C) No. 20500017, Grant-in-Aid for YoungSientists (B) No. 18700014 and 18700015, and Asahi glassfoundation.Referenes[1℄ Y. Asahiro, J. Jansson, E. Miyano, H. Ono, and K. Zenmyo.Approximation algorithms for the graph orientation mini-mizing the maximum weighted outdegree. In Proeedings ofAlgorithmi Aspets in Information and Management, ThirdInternational Conferene (AAIM 2007), pp.167�177, 2007.[2℄ Y. Asahiro, E. Miyano, and H. Ono. Graph lasses and theomplexity of the graph orientation minimizing the maximumweighted outdegree. In Proeedings of heory of Comput-ing 2006, Proeedings of the Twelfth Computing: The Aus-tralasian Theory Symposium (CATS2006), pp.97�106, 2008.[3℄ Y. Asahiro, E. Miyano, H. Ono, and K. Zenmyo. Graphorientation algorithms to minimize the maximum outdegree.International Journal of Foundations of Computer Siene,18(2), pp.197�215, 2007.[4℄ N. Bansal and M. Sviridenko. The Santa Claus problem. InProeedings of the 38th Annual ACM Symposium on Theoryof Computing (STOC2006), pp.31�40, 2006.[5℄ I. Bezáková and V. Dani. Alloating indivisible goods. ACMSIGeom Exhanges, 5(3), pp.11�18, 2005.
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