
Journal of Computer and System Sciences 118 (2021) 108–118
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Pushing the Online Boolean Matrix-vector Multiplication

conjecture off-line and identifying its easy cases ✩

Leszek Gąsieniec a, Jesper Jansson b, Christos Levcopoulos c, Andrzej Lingas c,∗,
Mia Persson d

a Department of Computer Science, University of Liverpool, Ashton Street, L69 38X, UK
b Department of Computing, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
c Department of Computer Science, Lund University, 22100 Lund, Sweden
d Department of Computer Science and Media Technology, Malmö University, 20506 Malmö, Sweden

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 August 2019
Received in revised form 17 December 2020
Accepted 26 December 2020
Available online 8 January 2021

Keywords:
Boolean matrix
Product of matrix and vector
Dynamic graph problems
Online computation
Time complexity

Henzinger et al. posed the so-called Online Boolean Matrix-vector Multiplication (OMv)
conjecture and showed that it implies tight hardness results for several basic dynamic or
partially dynamic problems [STOC’15]. We first show that the OMv conjecture is implied
by a simple off-line conjecture that we call the MvP conjecture. We then show that if
the definition of the OMv conjecture is generalized to allow individual (i.e., it might be
different for different matrices) polynomial-time preprocessing of the input matrix, then
we obtain another conjecture (called the OMvP conjecture) that is in fact equivalent
to our MvP conjecture. On the other hand, we demonstrate that the OMv conjecture
does not hold in restricted cases where the rows of the matrix or the input vectors are
clustered, and develop new efficient randomized algorithms for such cases. Finally, we
present applications of our algorithms to answering graph queries.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Henzinger et al. considered the following Online Boolean Matrix-vector Multiplication (OMv) problem in [8]. Initially, an
(n × n)-Boolean matrix M is given. Then, for i = 1, ..., n, in the i-th round an n-dimensional Boolean column vector vi

is given and the task is to compute the product between M and vi before the next round. The objective is to design a
(possibly randomized) algorithm that solves the OMv problem, i.e., that computes all the n products as quickly as possible.
In [8], Henzinger et al. provided efficient reductions of the OMv problem to several basic dynamic or partially dynamic
problems including subgraph connectivity, Pagh’s problem, d-failure connectivity, decremental single-source shortest paths,
and decremental transitive closure.

The OMv conjecture was also introduced in [8]. To express it (as well as certain other conjectures below), we shall refer
to an O (n3−ε) bound or an O (n2−ε) bound, where ε is a positive constant, as substantially sub-cubic or substantially sub-
quadratic, respectively.

✩ A preliminary version of this article has appeared in Proceedings of the 13th International Workshop on Frontiers in Algorithmics (FAW 2019), Lecture
Notes in Computer Science, Vol. 11458, pp. 156–169, Springer Nature Switzerland AG, 2019.

* Corresponding author.
E-mail addresses: L.A.Gasieniec@liverpool.ac.uk (L. Gąsieniec), jesper.jansson@polyu.edu.hk (J. Jansson), Christos.Levcopoulos@cs.lth.se (C. Levcopoulos),

Andrzej.Lingas@cs.lth.se (A. Lingas), mia.persson@mau.se (M. Persson).
https://doi.org/10.1016/j.jcss.2020.12.004
0022-0000/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcss.2020.12.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2020.12.004&domain=pdf
mailto:L.A.Gasieniec@liverpool.ac.uk
mailto:jesper.jansson@polyu.edu.hk
mailto:Christos.Levcopoulos@cs.lth.se
mailto:Andrzej.Lingas@cs.lth.se
mailto:mia.persson@mau.se
https://doi.org/10.1016/j.jcss.2020.12.004

L. Gąsieniec, J. Jansson, C. Levcopoulos et al. Journal of Computer and System Sciences 118 (2021) 108–118
Fig. 1. The relationships between the conjectures.

Conjecture 1. OMv conjecture (Henzinger et al. [8]) There is no randomized algorithm that solves the OMv problem in substantially
sub-cubic time with an error probability of at most 1/3.

Their conjecture implies tight hardness results for the aforementioned dynamic or partially dynamic problems [8].
As shown in [8], the OMv conjecture also implies the following conjecture called the Mv conjecture.

Conjecture 2. Mv conjecture (Henzinger et al. [8]) There is no randomized algorithm that after a polynomial-time universal prepro-
cessing of any (n × n)-Boolean matrix M computes the Boolean product of M with an arbitrary Boolean n-dimensional column vector
in substantially sub-quadratic time with an error probability of at most 1/3.

The fastest known algorithm for the OMv problem is due to Green Larsen and Williams [7]. Their recent (non-
combinatorial) randomized algorithm runs in O (n3/2�(

√
log n)) time. Williams [11] has also shown that any (n × n)-Boolean

matrix can be preprocessed in O (n2+ε) time so the Boolean product of the matrix with an arbitrary n-dimensional Boolean
vector can be computed in O (n2/ log2 n) time. This implies that the Mv problem corresponding to the Mv conjecture admits
an O (n2/ log2 n)-time solution. In another line of research, Chakraborty et al. [4] have recently established tight cell probe
bounds for succinct Boolean matrix-vector multiplication.

We shall refer to a problem considered in a conjecture and consequently the conjecture as off-line or on-line depending
on whether the whole input to the problem is given at the beginning or it is given in series of pieces, respectively. According
to this convention, the OMv conjecture is on-line while the Mv conjecture is off-line. Still an off-line problem can have some
on-line flavor, e.g., in the form of preprocessing.

1.1. Our contributions

In this paper, we introduce and study a number of related conjectures, whose relationships to each other and to previous
work are summarized in Fig. 1. Formulating the conjectures, we shall distinguish between a universal preprocessing that can
be applied to any Boolean square matrix and an individual preprocessing that can be applied only to a given Boolean square
matrix. In other words, in the universal case there exists a uniform preprocessing algorithm applicable to all Boolean square
matrices while in the individual case for each Boolean square matrix there exists a (not necessarily uniform) preprocessing
algorithm.

We first prove that the OMv conjecture is implied by the following simple off-line conjecture that we call the MvP
conjecture: For any constant ε > 0 and any polynomial p there is an (n ×n) Boolean matrix M that cannot be (individually)
preprocessed in p(n) time such that the Boolean product of M with an arbitrary n-dimensional column vector v can be
computed in O (n2−ε) time with an error probability of at most 1/3. To help us prove the implication, we introduce a
variant called the AMv conjecture that turns out to be equivalent to the MvP conjecture. We also prove that if the OMv
problem is relaxed by allowing for an individual polynomial-time preprocessing of the matrix M then the corresponding
online conjecture (named OMvP) becomes equivalent to our MvP conjecture.

There is a subtle but important difference between our MvP conjecture and the Mv conjecture mentioned above: In
our conjecture, the preprocessing is individual (not uniform) with respect to the matrices, while in the Mv conjecture, one
considers a universal (uniform) preprocessing. It follows that the difficulty of proving/disproving the OMv conjecture lies
between the two aforementioned off-line conjectures; namely, OMv is not more difficult than MvP and not easier than Mv.

We also observe that one of the techniques used above can be applied to the Combinatorial Boolean Matrix Multiplication
(CBMM) conjecture. This conjecture states that there is no combinatorial (randomized) algorithm for the Boolean product
of two (n × n)-Boolean matrices that runs in substantially subcubic time [2,8]. We show that if the CBMM conjecture is
modified to allow for a polynomial-time universal preprocessing of one of the matrices, the resulting conjecture will still be
equivalent to the original CBMM conjecture.

Next, by adapting known algorithms for Boolean matrix product of matrices with clustered data [3,5,6], we obtain a com-
binatorial randomized algorithm for the product of an (n × n)-Boolean matrix M and an arbitrary n-dimensional Boolean
column vector v running in Õ (n + ST M) time after an O (n2)-time preprocessing of M , where ST M stands for the cost of a
minimum spanning tree of the rows of M under the extended Hamming distance (never exceeding the Hamming distance).
We present also a deterministic algorithm for the M v problem running in Õ (n + ST M) time after an O (n3)-time preprocess-
ing of M . Consequently, we obtain a combinatorial randomized algorithm for the OMv problem running in Õ (n(n + ST M))

time. We also show that OMv admits a combinatorial randomized algorithm running in Õ (n max{ST (V), n1+o(1))) time,
109

L. Gąsieniec, J. Jansson, C. Levcopoulos et al. Journal of Computer and System Sciences 118 (2021) 108–118
where ST (V) stands for the cost of a minimum spanning tree of the column vectors v1, ..., vn under the extended Ham-
ming distance. The time analysis of the latter algorithm relies in part on our analysis of an approximate nearest-neighbor
online heuristic for the aforementioned minimum spanning tree.

The overwhelming majority of the reductions of the OMv problem to other dynamic or partially dynamic problems in
[8] are unfortunately one-way reductions that do not yield applications of our algorithms for the OMv and Mv problems.
Following the applications of the Mv problem given in [2,11], we provide analogous applications of our algorithms to
vertex subset queries (e.g., for a given graph, such a query asks if a given subset of vertices is independent) and triangle
membership queries.

1.2. Organization of the Paper

Section 2 introduces three new conjectures and shows implications and equivalences between them and the OMv con-
jecture. Its final subsection discusses the combinatorial Boolean matrix product. In Section 3, we develop new randomized
algorithms for the OMv and Mv problems whose time complexity depends on the minimum cost of a spanning tree of the
rows of the matrix or the input column vectors under the extended Hamming distance, and Section 4 presents applications
of our algorithms to answering graph queries. Section 5 concludes with some final remarks.

2. Off-line conjectures

In this section, we introduce several new conjectures related to the OMv conjecture and study relationships between
them and the OMv conjecture (see Fig. 1).

By the auxiliary Boolean Matrix-vector multiplication problem (AMv) we shall mean the problem of computing the product
of a fixed (n × n)-Boolean matrix M , that can be (individually) preprocessed in O (n3−ε) time for some fixed ε > 0, with
an arbitrary n-dimensional Boolean column vector v . We first state the following conjecture corresponding to the AMv
problem.

Conjecture 3. AMv conjecture There is no randomized algorithm that after an individual preprocessing of an (n × n)-Boolean ma-
trix M in substantially sub-cubic time computes the Boolean product of M with an arbitrary n-dimensional Boolean column vector v
in substantially sub-quadratic time with an error probability of at most 1/3.

Note that the AMv conjecture is an offline conjecture.

2.1. Relationship between the AMv conjecture and the OMv conjecture

Our first result states that the AMv conjecture implies the OMv conjecture.

Lemma 1. Let ε be a positive constant and let M be an (n × n)-Boolean matrix. If the OMv problem for M can be solved in O (n3−ε)

time with an error probability of at most 1/3 then the matrix M can be (individually) preprocessed in O (n3−ε) time such that the
Boolean product of M with an arbitrary input n-dimensional Boolean column vector v can be computed in O (n2−ε) time with an error
probability of at most 1/3. Consequently, the AMv conjecture implies the OMv conjecture.

Proof. Construct a sequence of n-dimensional Boolean vectors v1,....vn iteratively by picking as vi a vector that jointly with
the preceding vectors maximizes the total time of the assumed OMv solution for v1, ..., vi . Since the assumed OMv solution
for the whole sequence takes O (n3−ε) time, there must be i ∈ {1, ..., n} such that the product of M with vi is computed in
O (n2−ε) time after computing the products of M with the preceding vectors in the sequence. The computation of all the
products clearly takes O (n3−ε) time and it has an error probability of at most 1/3. By the definition of vi , if we compute
instead of the product of M with vi , the product of M with an arbitrary n-dimensional input vector v , the computation
will take only O (n2−ε) time after the products with the preceding vectors have been computed. Again, the computation of
all the products, and hence in particular that of M with v , will have an error probability of at most 1/3. Since the vectors
v1...vi−1 are fixed, the computation of the products of M with the preceding vectors can be regarded as an O (n3−ε)-time
preprocessing. �

Unfortunately, we cannot show the reverse implication, i.e., that the OMv conjecture implies the AMv one like it implies
the Mv conjecture [8]. The reason is that in the definition of the AMv problem, we do not require a universal preprocessing
that could work for any matrix M of size n × n; we only require the existence of an individual preprocessing for a given M .

In the next lemma, we demonstrate that allowing for an arbitrary (individual) polynomial-time preprocessing instead of
the substantially subcubic one yields a new problem that is still equivalent to the AMv one. This lemma and its proof idea
of dividing the matrix and the vector into appropriate submatrices and subvectors are similar to Lemma 2.3 in [8] and its
proof. The proof technique can be also credited to [10].
110

L. Gąsieniec, J. Jansson, C. Levcopoulos et al. Journal of Computer and System Sciences 118 (2021) 108–118
Lemma 2. Let δ and ε be positive constants. If for any (n × n)-Boolean matrix M there is an O (n3+δ)-time individual preprocessing
such that the product of M with an arbitrary n-dimensional Boolean column vector v can be computed in O (n2−ε) time with an error
probability of at most 1/3 then there is a positive constant ε ′ such that after an O (n3−ε′

)-time individual preprocessing the product
of M with such a vector v can be computed in O (n2−ε′

) time with an error probability of at most 1/3.

Proof. Divide M into n2α quadratic submatrices Mi, j of size n1−α × n1−α , where i, j ∈ {1, ..., nα}. Preprocess all the subma-
trices in O (n2α × (n1−α)3+δ) time. Then, the product of M with the vector v can be computed in O (n2α × (n1−α)2−ε +n1+α)

time. The last term in the expression represents the cost of summing the results of the products of the submatrices with
respective subvectors of v of length n1−α . In order to obtain an exponent of the total preprocessing time in the form 3 − ε ′
and the exponent of computing the product in the form 2 −ε ′ , it is sufficient to solve the inequalities 2α+(1 −α)(3 +δ) < 3,
2α + (1 − α)(2 − ε) < 2 and 1 + α < 2 with respect to α. Any α in the open interval (δ

1+δ
, 1) satisfies these inequalities.

Following the proof of Lemma 2.3 in [8], we can keep the error probability below 1/3 by repeating the computation of
each of the products of a submatrix of M with a respective vector O (log n) times, and picking the most frequent answer. In
order to tackle the additional logarithmic factor in the time complexity, we can slightly decrease our ε ′ . �

We shall call the problem and the conjecture resulting from the AMv problem and the AMv conjecture by replacing an
O (n3−ε) (individual) preprocessing time with a polynomial (individual) preprocessing time, the Boolean Matrix-vector multi-
plication with polynomial-time (individual) preprocessing problem and the Boolean Matrix-vector multiplication with polynomial-
time (individual) preprocessing conjecture (MvP for short), respectively.

Conjecture 4. MvP conjecture There is no randomized algorithm that after an individual polynomial-time preprocessing of an (n ×n)-
Boolean matrix M computes the Boolean product of M with an arbitrary n-dimensional Boolean column vector v in substantially
sub-quadratic time with an error probability of at most 1/3.

Since the MvP conjecture trivially implies the AMv conjecture, Lemmas 1 and 2 give us the following theorem.

Theorem 1. The AMv and MvP conjectures are equivalent and they imply the OMv conjecture.

2.2. Relaxing the OMv problem

In this subsection, we consider generalized versions of the OMv problem and the OMv conjecture that allow for in-
dividual polynomial-time preprocessing of the matrix. We shall term them the OMvP problem and the OMvP conjecture,
respectively. Our goal is to establish how the OMvP conjecture is related to the MvP and AMv conjectures.

The proof of the following lemma is analogous to that of Lemma 1.

Lemma 3. Let ε be a positive constant, and let M be an (n × n)-Boolean matrix. If the OMvP problem for M and any positive natural
number n, after a polynomial-time (individual) preprocessing of M can be solved in O (n3−ε) time with an error probability of at most
1/3 then the matrix M can be (individually) preprocessed in polynomial time such that the Boolean product of M with an arbitrary
input n-dimensional Boolean column vector v can be computed in O (n2−ε) time with an error probability of at most 1/3. Consequently,
the MvP conjecture implies the OMvP conjecture.

Proof. First, individually preprocess M in polynomial time following the lemma assumptions on OMvP. Then, construct a
sequence of n-dimensional Boolean vectors v1,....vn iteratively by picking as vi a vector that jointly with the preceding
vectors maximizes the total time of the assumed OMvP solution for v1, ..., vi . Since the assumed OMvP solution for the
whole sequence takes O (n3−ε) time, there must be i ∈ {1, ..., n} such that the product of M with vi is computed in O (n2−ε)

time after computing the products of M with the preceding vectors in the sequence. The computation of the latter products
clearly takes O (n3−ε) time and it has an error probability of at most 1/3. By the definition of vi , if we compute instead of
the product of M with vi , the product of M with an arbitrary n-dimensional input vector v , the computation will take only
O (n2−ε) time after the products with the preceding vectors are computed. Again, the computation of all the products, and
hence in particular that of M with v , will have an error probability of at most 1/3. Since the vectors v1...vi−1 are fixed, the
computation of the products of M with the preceding vectors jointly with the initial individual preprocessing of M forms a
polynomial-time individual preprocessing of M . �

Now we are ready to show that the OMvP conjecture implies the AMv conjecture.

Lemma 4. Let ε be a positive constant, and let M be an (n × n)-Boolean matrix. If the AMv problem for M can be solved in O (n2−ε)

time with an error probability of at most 1/3 after an O (n3−ε) individual preprocessing of M then the OMvP problem for the matrix
M and n Boolean column vectors can be solved in O (n3−ε) time with an error probability of at most 1/3. Consequently, the OMvP
conjecture implies the AMv conjecture.
111

L. Gąsieniec, J. Jansson, C. Levcopoulos et al. Journal of Computer and System Sciences 118 (2021) 108–118
Proof. Before computing the product of M with the first vector, perform the appropriate individual O (n3−ε) time prepro-
cessing of M . After that the product of M with each consecutive vector can be computed in O (n2−ε) time, so the total
time for n vectors becomes O (n3−ε). We can keep the error probability below 1/3 for the whole sequence of input vectors
similarly as in the proof of Lemma 2. �

According to Theorem 1, the AMv and MvP conjectures are equivalent. By applying Lemmas 3 and 4, we immediately
obtain the following extension of Theorem 1. (See also the summary in Fig. 1.)

Theorem 2. The MvP, AMv, and OMvP conjectures are equivalent.

2.3. Combinatorial Boolean matrix product

Henzinger et al. showed in Lemma 2.3 in [8] that the possibility of universal bounded polynomial-time preprocessing
in the OMv conjecture is not essential. By using a similar technique, we can also obtain a result of similar flavor for the
Combinatorial Boolean Matrix Multiplication conjecture (CBMM). (For a definition of “combinatorial” in this setting, see, e.g.,
[2,8].) This well-known conjecture can be expressed as follows.

Conjecture 5. CBMM conjecture There is no randomized combinatorial algorithm that computes the Boolean product of two (n × n)-
Boolean matrices A and B in substantially subcubic time with an error probability of at most 1/3.

The proof of the following lemma is similar to that of Lemma 2.

Lemma 5. Let δ and ε be positive constants. If there is a combinatorial O (n3+δ)-time universal preprocessing of any (n × n)-Boolean
matrix A such that the product of A with an arbitrary (n × n)-Boolean matrix B can be combinatorially computed in O (n3−ε) time
with an error probability of at most 1/3 then there is an ε ′ > 0 such that the product of A with such a matrix B can be combinatorially
computed in O (n3−ε′

) time with an error probability of at most 1/3.

Proof. Following the proof of Lemma 2, divide A into n2α quadratic submatrices Ai, j of size n1−α × n1−α , where
i, j ∈ {1, ..., nα}. Preprocess all the submatrices in O (n2α × (n1−α)3+δ) time. Next, similarly divide B into n2α quadratic
submatrices Bi, j of size n1−α × n1−α , where i, j ∈ {1, ..., nα}. Then, the product of A with the matrix B can be computed
in O (n3α × (n1−α)3−ε + n2αn1−αnα) time. The last term in the expression represents the cost of summing the results of
the n3α products of the submatrices. In order to obtain an exponent of the total preprocessing time in the form 3 − ε ′ and
the exponent of computing the product in the form 3 − ε ′ it is sufficient to solve the inequalities 2α + (1 − α)(3 + δ) < 3,
3α + (1 − α)(3 − ε) < 3 and 1 + 2α < 3 with respect to α. Any α in the open interval (δ

1+δ
, 1) satisfies these inequalities.

We can keep the error probability below 1/3 analogously as in the proof of Lemma 2. �
We shall call the conjecture resulting from the CBMM conjecture by allowing a combinatorial universal polynomial-time

preprocessing of one of the input matrices the CBMM with (polynomial-time) universal preprocessing conjecture, or CBMMUP
for short. By Lemma 5 and the equality AB = (Bt At)t in case the second matrix is preprocessed, we obtain the following
theorem.

Theorem 3. The CBMM and CBMMUP conjectures are equivalent.

3. Easy cases of matrices and vectors for the conjectures

In this section, we demonstrate that the OMv conjecture does not hold in restricted cases where the rows of the matrix
or the input vectors are clustered, and develop some new efficient randomized algorithms for such cases.

Björklund et al. [3] proposed a method for multiplying two Boolean matrices by using a close approximation of the
minimum spanning tree of the rows or columns of one of the matrices under the Hamming distance. Subsequently, the
method has been generalized to include the so-called extended Hamming distance [6] and integer matrix multiplication [5].
In the first warming-up subsection, we present an explicit adaptation of the aforementioned generalizations to the case
of the product of an (n × n)-Boolean (or 0 − 1) matrix M and an n-dimensional Boolean (or 0 − 1) column vector v in
the context of the OMv conjecture. Several results presented in the first subsection can be regarded as implicit in [5,6].
This is not the case in the second subsection handling the online scenario where the input column vectors are clustered.
Here, we have to develop a novel online approach involving among other things an analysis of an approximate nearest-
neighbor online heuristic for minimum spanning tree of the vectors under the extended Hamming distance. We shall use
the following concepts in both subsections below.

Definition 1. For two 0 − 1 strings s = s1s2....sm and u = u1u2...um, their Hamming distance, i.e., the number of k ∈ {1, ..., m},
s.t., sk �= uk, is denoted by H(s, u). The extended Hamming distance, E H(s, u), between the strings is defined by a recursive equation
112

L. Gąsieniec, J. Jansson, C. Levcopoulos et al. Journal of Computer and System Sciences 118 (2021) 108–118
Fig. 2. An illustration of the extended Hamming distance between two strings s and u of equal length. Here, H(s, u) = 6 while E H(s, u) = 3. The three
differentiating blocks are z1, z2, z3, with h(z1) = 1, h(z2) = 1, and h(z3) = −1.

E H(s, u) = E H(sl+1...sm, ul+1...um) + (s1 + u1 mod 2), where l is the maximum number such that s j = s1 and u j = u1 for j =
1, ..., l.

Note that the extended Hamming distance between two strings never exceeds the Hamming one and it better reflects
the real cost of turning one of the strings into the other.

Definition 2. For two 0 − 1 strings s = s1s2....sm and u = u1u2...um, a differentiating block for s and u is a maximal consecutive
subsequence z of 1, 2, ...m, such that either for each i ∈ z, si = 1 and ui = 0 hold, or for each i ∈ z, si = 0 and ui = 1 hold. In the first
case, we denote h(z) = −1 and in the second case, h(z) = 1.

See Fig. 2 for an example.

3.1. Small spanning tree of the rows of the matrix (warming up)

For c ≥ 1 and a finite set S of points in a metric space, a c-approximate minimum spanning tree for S is a spanning tree in
the complete weighted graph on S , with edge weights equal to the distances between the endpoints, whose total weight is
at most c times the minimum.

Fact 4. (Lemma 3 in [6]) For ε > 0, a (2 + ε)-approximate minimum spanning tree for a set of n 0 − 1 strings of length d under the
extended Hamming metric can be computed by a Monte Carlo algorithm in time O (dn1+1/(1+ε/2)).

By selecting ε = 2 log n, we obtain the following lemma.

Lemma 6. Let M be an (n × n)-Boolean matrix. An O (logn)-approximation minimum spanning tree for the set of rows of M under
the extended Hamming distance can be constructed by a Monte Carlo algorithm in O (n2) time.

We shall also use the following data structure, easily obtained by computing all prefix sums:

Fact 5. (e.g., see [5]) For a sequence of integers a1, a2 ,. . . ,an, one can construct a data structure that supports a query asking for reporting
the sum

∑ j
k=i ak for 1 ≤ i ≤ j ≤ n in O (1) time. The construction takes O (n) time.

By using Lemma 6 and Fact 5, we obtain the following algorithm (Algorithm 1) for computing the arithmetic product of
the input Boolean matrix M and Boolean vector v interpreted as 0 − 1 ones. Observe that the aforementioned arithmetic
product immediately yields the corresponding Boolean one.

Definition 3. For an (n ×n)-Boolean matrix A, let ST A stand for the minimum cost of a spanning tree of rowi(A), i ∈ {1, ..., n}, under
the extended Hamming distance.

Lemma 7. Algorithm 1 runs in Õ (n2 + ST M) time with high probability. If Steps 1, 2, 3 are treated as a preprocessing of the matrix M
then it runs in Õ (n + ST M) time with high probability after an O (n2)-time preprocessing.

Proof. The approximate minimum spanning tree T in Step 1 can be constructed by a Monte Carlo algorithm in O (n2)

time by Lemma 6. Its traversal can be found in O (n) time. Since the length of the traversal is linear in n, Step 2 can
be easily implemented in O (n2) time. Step 3 takes O (n) time by Fact 5. Finally, based on Step 2, Step 4 (b)-iii takes
Õ (1 + E H(rowi(M), rowl(M))) time. Let U stand for the set of directed edges forming the traversal of the spanning tree T .
It follows that Step 4 (b) can be implemented in Õ (n + ∑

(i,l)∈U E H(rowi(M), rowl(M))) time, i.e., in Õ (n + ST M) time by
Lemma 6. Consequently, Step 4 takes Õ (n + ST M) time. �

By Lemma 7, we obtain:
113

L. Gąsieniec, J. Jansson, C. Levcopoulos et al. Journal of Computer and System Sciences 118 (2021) 108–118
Algorithm 1
Input: An (n × n)-Boolean matrix M and an n-dimensional Boolean column vector v .

Output: The arithmetic product c = (c1, ..., cn) of M and v interpreted as a 0 −1 matrix and a 0 −1 vector, respectively.

1. Find an O (log n)-approximate spanning tree T for the rows rowi(M), i = 1, . . . , n, of M under the extended
Hamming distance and a traversal (i.e., a not necessarily simple path visiting all vertices) of T .

2. For each pair (rowi(M), rowl(M)), where the latter row follows the former in the traversal, find a set S of the
differentiating blocks for rowi(M) and rowl(M) as well as the differences h(s) (1 or −1) between the common
value of each entry in Ml,min s, . . . , Ml,max s and the common value of each entry in Mi,min s, . . . , Mi,max s for each
s ∈ S .

3. Initialize a data structure D for counting partial sums of the values of coordinates on continuous fragments of
the vector v .

4. Iterate the following steps:
(a) Compute cq where q is the index of the row from which the traversal of T starts.
(b) While following the traversal of T , iterate the following steps:

i. Set i, l to the indices of the previously traversed row and the currently traversed row, respectively.
ii. Set cl to ci .

iii. For each differentiating block s for rowi(M) and rowl(M), compute
∑

k∈s vk using D and set cl to cl +
h(s)

∑
k∈s vk .

5. Output the vector (c1, c2, ..., cn)

Theorem 6. The Boolean product c of an (n × n)-Boolean matrix M and an n-dimensional Boolean column vector v can be computed
by a randomized algorithm in Õ (n + ST M) time with high probability after O (n2)-time preprocessing.

Proof. The correctness of Algorithm 1 follows from the observation that a differentiating block s for rowi(M) and rowl(M)

yields the difference h(s)
∑

k∈s vk between cl and ci just on the fragment corresponding to Mi,min s, . . . , Mi,max s and
Ml,min s, . . . , Ml,max, respectively. Lemma 7 yields the upper bounds in terms of ST M . �

We can compute the exact minimum spanning tree of the rows of the matrix M under the extended Hamming distance
by computing extended Hamming distances between all pairs of rows of M in O (n3) time. Hence by replacing the random-
ized approximate computation of the minimum spanning tree with the deterministic exact one in Algorithm 1, we obtain
the following theorem.

Theorem 7. The Boolean product c of an (n × n)-Boolean matrix M and an n-dimensional Boolean column vector v can be computed
deterministically in Õ (n + ST M) time after O (n3)-time preprocessing.

Corollary 1. The OMv problem for an (n × n)-Boolean matrix can be solved by a randomized algorithm in Õ(n(n + ST M)) time with
high probability while the Mv problem can be solved by a randomized algorithm in Õ (n + ST M) time with high probability after
O (n2)-time preprocessing or it can be solved deterministically in Õ(n + ST M) time after O (n3)-time preprocessing.

3.2. Small spanning tree of the input vectors

In this subsection, we assume an online scenario where besides the Boolean matrix there is given a sequence of n-
dimensional Boolean vectors received one at a time. In order to specify and analyze our algorithm (Algorithm 2), we need
the following concepts and facts related to them.

Definition 4. For a metric space P and a point q ∈ P , a c-approximate nearest neighbor of q in P is a point p ∈ P different from q
such that for all p′ ∈ P , p′ �= q, dist(p, q) ≤ c × dist(p′, q). The ε-approximate nearest neighbor search problem (ε-NNS) in P is to
find for a query point q ∈ P a (1 + ε)-approximate nearest neighbor of q in P .

Fact 8. (See the third row in Table 4.3.1.1 in [1]) For ε > 0, there is a Monte Carlo algorithm for the dynamic (i.e., supporting point
insertions and deletions) ε-NNS in {0, 1}d under the Hamming metric which requires O (d�

1
1+2ε +o(1)) query time and O (d�

1
1+2ε +o(1))

update time, where � is the maximum number of stored vectors in {0, 1}d.

Fact 9. [6] There is a simple, linear-time, transformation of any 0 − 1 string w into the string t(w) such that for any two 0 − 1 strings
s and u, E H(s, u) = � H(t(s),t(u)) 	.
2

114

L. Gąsieniec, J. Jansson, C. Levcopoulos et al. Journal of Computer and System Sciences 118 (2021) 108–118
Note that the size of t(w) is linear in that of w by the linear-time complexity of the transformation. By combining
Facts 8 and 9, we obtain the following corollary.

Corollary 2. There is a randomized Monte Carlo algorithm for a dynamic O (log�)-NNS in {0, 1}d under the extended Hamming metric
which requires O (d�o(1)) query time and O (d�o(1)) update time.

Our online algorithm is as follows.

Algorithm 2
Input: Given a priori an (n × n)-Boolean matrix M and an online sequence of n-dimensional Boolean vectors
v1, v2, ..., v� , received one at a time.

Output: For i = 1, ..., �, the arithmetic product ci = (ci
1, ..., c

i
n) = M vi of M and vi , treated as a 0-1 matrix and a 0-1

column vector, is output before receiving vi+1.

1. For j = 2, . . . , n, initialize a data structure D j that for any interval u ⊆ {1, ..., n} reports
∑

k∈u M[j, k] using Fact 5.
2. Receive the first vector v1 and compute the arithmetic product c1 = (c1

1, ..., c
1
n) of M with v1 by the definition of

matrix-vector multiplication.
3. For i = 2, . . . , �, receive the i-th vector vi = (vi

i, ..., v
i
n) and iterate the following steps:

(a) Find an O (log �)-approximate nearest neighbor vm of vi in the set {v1, ..., vi−1}.
(b) Determine the differentiating blocks s and the differences h(s) for vm and vi .
(c) For j = 1, . . . , n iterate the following steps.

i. Set ci
j to cm

j .
ii. For each differentiating block s of vm and vi iterate the following steps.

A. Compute
∑

k∈s M[j, k] using D j .
B. Set ci

j to ci
j + h(s)

∑
k∈s M[j, k].

(d) Output ci = (ci
1, ..., c

i
n)

The following lemmas analyze the time complexity of Algorithm 2. The first lemma is a direct consequence of Corollary 2.

Lemma 8. There is a randomized Monte Carlo algorithm for a dynamic O (log�)-NNS in {0, 1}d under the extended Hamming metric
such that:

• The insertions of the vectors v1 through v� in Algorithm 2 can be implemented in O (n�1+o(1)) total time.
• The O (log�)-approximate nearest neighbors of vi , i = 2, ..., �, in {v1, ..., vi−1}, in Step 3 (a) of Algorithm 2 can be found with

high probability in O (n�1+o(1)) total time.

Proof. By Corollary 2, the � − 1 updates and � − 2 O (log�)-approximate nearest neighbor queries take O (n�1+o(1)) total
time. �
Lemma 9. Algorithm 2 can be implemented in time Õ(n(�1+o(1) + ∑�

i=2 min{dist(vi, v j)| j < i})).

Proof. Step 1 can be implemented in O (n2) time by Fact 5 while Step 2 can be trivially done in O (n2) time by the
definition. Step 3 (a) takes t(i) time, where t(i) is the time taken by finding an O (log �)-approximate neighbor of vi in
{v1, v2, ..., vi−1} and inserting vi in the dynamic data structure supporting the O (log �)-approximate neighbor queries, with
high probability. The differentiating blocks s and the differences h(s) for vm and vi can be easily determined in O (n) time
in Step 3 (b). Since the number of the aforementioned blocks is within a polylogarithmic factor of min{dist(vi, v j)| j < i},
the whole update of cm to ci in Step 3 (c) takes Õ (n(1 + min{dist(vi, v j)| j < i})) time. Finally, it follows from Lemma 8 that
∑�

i=2 t(i) = O (n�1+o(1)). �
To pursue our time analysis of Algorithm 2, we need to show

∑�
i=2 min{dist(vi, v j)| j < i} = Õ (ST (V)), where ST (V)

is the minimum cost of the spanning tree of the vectors in V = {v1, v2, ..., v�} under the extended Hamming distance. For
this purpose, we shall analyze the following simple heuristic for an online variant of the minimum spanning tree problem
(MST).
115

L. Gąsieniec, J. Jansson, C. Levcopoulos et al. Journal of Computer and System Sciences 118 (2021) 108–118
Approximate Nearest-Neighbor Heuristic for MST

Input: an online sequence V of points (in particular, vectors) v1, v2, received one at a time.

Output: a sequence of spanning trees Ti of the points v1 through vi constructed before receiving vi+1 for all i > 1.

1. Set T1 to the singleton tree {v1};
2. for each received point vi, i > 1 do

(a) find an f (i)-approximate nearest neighbor u of vi in the set of points received so far;
(b) let Ti be the spanning tree Ti−1 built for points received before vi and expand it by {u, vi};
(c) output Ti .

Theorem 10. Assume that the function f is not decreasing and the input points to the approximate nearest-neighbor heuristic for MST
are drawn from a metric space. The spanning tree constructed by the heuristic for the first t points has cost not exceeding �log2 t	 f (t)
times the minimum.

Proof. Assume first that t is a power of two. Let V = {v1, ..., vt} be the sequence of t points received, where vi is the i-th
point received.

Consider a minimum cost perfect matching P of V (recall that V is even). For each edge {vi, v j} in P , where i < j, the
cost of connecting v j to the current spanning tree T j−1 of v1 through v j−1 does not exceed f (t) ×dist(vi, v j). Thus, for t/2
points vl in V , the accumulated cost of connecting them to the current spanning tree Tl−1 does not exceed the total cost of
P times f (t). Note that the total cost of P is not greater than half the minimum cost T S P (V) of the traveling salesperson
tour of V . Simply, the tour can be decomposed into two perfect matchings of V .

In order to estimate from above the cost of connecting the remaining t/2 points to the current spanning trees, we iterate
our argument.

Thus, let V 1 denote the remaining set of points and let P1 be their minimum-cost perfect matching. We can again
estimate the cost of connecting half of the t/2 points in V 1 to the current spanning trees by the cost of P1 times f (t).
On the other hand, we can estimate the cost of P1 by 1

2 T S P (V 1) ≤ 1
2 T S P (V). We handle analogously the remaining t/4

points and so on. After log2 t iterations, we are left with the first point, and can estimate the total cost of connecting all
other points to the current spanning trees by log2 t × f (t)T S P (V)/2. On the other hand, by the doubling MST heuristic, we
know that T S P (V) is at most twice the cost ST (V) of minimum-cost spanning tree of V . We conclude that the cost of the
spanning tree of V constructed by the approximate nearest-neighbor heuristic does not exceed log2 t × f (t)ST (V).

If t is not a power of two, we have to consider minimum-cost maximum cardinality matchings instead of minimum-cost
perfect matchings. Let t′ = 2�log2 t	 . Observe that the number of the remaining points after each iteration when we start
with a sequence S of t points will be not greater than that when we start with a sequence S ′ of t′ points, where S ′ is an
extension of the sequence S . This completes the proof of the �log2 t	 f (t)ST (V) upper bound. �

In the special case when f () ≡ 1, our online heuristic for MST in a way coincides with the greedy one for incremental
minimum Steiner tree from [9], which on weighted graphs satisfying the triangle inequality could fairly easily be adapted
to consider received vertices only. Hence, in this case a logarithmic upper bound on approximation factor could be also
deduced from Theorem 3.2 in [9]. By combining Lemma 9 with Theorem 10, we obtain our main result in this section.

Theorem 11. Let M be an (n × n)-Boolean matrix. For an online sequence V of n-dimensional Boolean vectors v1, v2, ..., v� received
one at a time, the Boolean products M vi of M and vi can be computed before receiving vi+1 in total time Õ (n(�1+o(1) + ST (V)))

with high probability by a randomized algorithm, where ST (V) is the minimum cost of the spanning tree of the vectors in V under the
extended Hamming distance.

Proof. The correctness of Algorithm 2 follows from the observation that a differentiating block s for vm and vi yields the
difference h(s)

∑
k∈s M[j, k] between cm

j and cu
j just on the fragments vm

min s, . . . , v
m
i,max s and vi

min s, . . . , v
i
max s , respectively.

By Theorem 10, we have
∑�

i=2 min{dist(vi, v j)| j < i} = Õ (ST (V)). Now it is sufficient to plug the latter estimation in the
upper time bound of Lemma 9 to complete the proof. �
4. Applications to graph queries

Suppose that we are given a graph G = (V , E) on n vertices and a subset S of V . In [11] Williams observed that the
questions if S is a dominating set, an independent set, or a vertex cover in G , can be easily answered by computing the
Boolean product of the adjacency matrix of G with appropriate Boolean vectors. Hence, he could conclude (Corollary 3.1
in [11]) that these questions can be answered in O (n2/(ε log n)2) time after an O (n2+ε) preprocessing of G by using his
method of multiplying an (n × n)-Boolean matrix with an n-dimensional column vector in O (n2/(ε log n)2) time after an
116

L. Gąsieniec, J. Jansson, C. Levcopoulos et al. Journal of Computer and System Sciences 118 (2021) 108–118
O (n2+ε)-time preprocessing of the matrix. By plugging in our method of Boolean matrix-vector multiplication (Theorem 6)
instead, we obtain the following result.

Corollary 3. A graph G on n vertices can be preprocessed in O (n2) time such that one can determine if a given subset of vertices in G
is a dominating set, an independent set, or a vertex cover of G in Õ (n + STG) time with high probability, where ST G is the minimum
cost of a spanning tree of the rows of the adjacency matrix of G under the extended Hamming distance. Using the same preprocessing,
one can determine if a query vertex belongs to a triangle in G in Õ (n + STG) time with high probability.

Proof. A subset S of vertices in G can be represented by an n-dimensional Boolean column vector w with 1 on the j-th
coordinate iff the j-th vertex belongs to S . Then, as Williams observed in [11], S is independent in G iff the vector u
resulting from multiplying the adjacency matrix of G with w has zeros on the coordinates corresponding to the vertices
in S . Next, S is a dominating set of G iff each vertex in V \ S has a neighbor in S , i.e., iff u has ones on the coordinates
corresponding to vertices in V \ S . Furthermore, S is a vertex cover of G iff V \ S is an independent set of G , i.e., iff
the vector resulting from multiplying the adjacency matrix of G with the complement of w has zeros on the coordinates
corresponding to the vertices in V \ S . Finally, Williams also observed that the problem of determining if a query vertex v
belongs to a triangle in a given graph reduces to checking the set of neighbors of v for independence (see Corollary 3.2 in
[11]).

Hence, it is sufficient to plug in our solution to matrix-vector multiplication given in Theorem 6 to obtain the corollary.
The preprocessing of G consists only of the construction of its adjacency matrix and a logarithmic approximation of ST G
in O (n2) time. Note also that the extended Hamming distance between two 0-1 strings is equal to the extended Hamming
distance between the complements of these two strings. Thus, the upper bound in terms of ST G is also valid in case of
vertex cover. �

To obtain corresponding applications of the results from subsection 3.2, we need to consider the online versions of the
graph subset queries. Thus, we are given a graph G on n vertices and an online sequence of subsets S1,...,S� of vertices in
G . The task is to preprocess G first and then to determine for i = 1, ..., �, if Si is a dominating set, an independent set,
or a vertex cover of G , respectively, before Si+1 has been received. Analogously, we obtain the following online version of
Corollary 3 by plugging in Theorem 11 instead of Theorem 6.

Corollary 4. A graph G on n vertices can be preprocessed in O (n2) time such that for an online sequence S of subsets S1 ,...,S� of
vertices in G, for i = 1, ..., �, one can determine if Si is a dominating set, an independent set, or a vertex cover of G before receiving
Si+1 (in i < � case) in Õ (n(�1+o(1) + ST S)) total time with high probability, where ST S is the minimum cost of a spanning tree of the
characteristic vectors representing the subsets in S under the extended Hamming distance. Using the same preprocessing, for an online
sequence v1, ..., v� of query vertices, for i = 1, ..., �, one can determine if vi belongs to a triangle in G before receiving vi+1 (in case
i < �) in Õ (n(�1+o(1) + ST�)) total time with high probability, where ST� is the minimum cost of a spanning tree of the � characteristic
vectors representing the sets of neighbors of the vertices under the extended Hamming distance.

5. Final remarks

Our results in Section 3 imply that to prove the OMv, AMv, and MvP conjectures, it suffices to consider (n × n)-Boolean
matrices where ST M is almost quadratic in n.

Interestingly enough, our approximate nearest-neighbor heuristic for MST combined with the standard MST doubling
and shortcutting techniques immediately yields a corresponding online heuristic for TSP in metric spaces. By Theorem 10,
it provides TSP tours T S P s of length at most 2�log2 s	 f (s) times larger than the optimum, where s is the number of
input vectors and f (s) is an upper bound on the approximation factor in the approximate nearest neighbor subroutine. The
resulting TSP heuristic for i = 2, ... simply finds an f (i)-nearest neighbor u of the new vector vi and replaces the edge
between u and its predecessor w by the path {w, vi}, {vi, u} in T S Pi−1 in order to obtain T S Pi .

CRedit authorship contribution statement

All the co-authors have contributed to this paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

Thanks go to the anonymous reviewers for their valuable comments. The authors were supported in part by Swedish
Research Council grant 621-2017-03750. JJ was also supported by PolyU Fund 1-ZE8L.
117

L. Gąsieniec, J. Jansson, C. Levcopoulos et al. Journal of Computer and System Sciences 118 (2021) 108–118
References

[1] A. Andoni, P. Indyk, Nearest neighbors in high-dimensional spaces, in: J.E. Goodman, J. O’Rourke, C.D. Toth (Eds.), 3rd edition, Handbook of Discrete
and Computational Geometry, CRC Press, Boca Raton, FL, 2017, 43rd chapter.

[2] N. Bansal, R. Williams, Regularity lemmas and combinatorial algorithms, Theory Comput. 8 (1) (2012) 69–94.
[3] A. Björklund, A. Lingas, Fast Boolean matrix multiplication for highly clustered data, in: Proc. of WADS 2001, in: LNCS, vol. 2125, 2001, pp. 258–263.
[4] D. Chakraborty, L. Kamma, K. Green Larsen, Tight cell probe bounds for succinct Boolean matrix-vector multiplication, in: Proc. of STOC 2018, 2018,

pp. 1297–1306.
[5] P. Floderus, J. Jansson, C. Levcopoulos, A. Lingas, D. Sledneu, 3D rectangulations and geometric matrix multiplication, Algorithmica 80 (1) (2018)

136–154.
[6] L. Gąsieniec, A. Lingas, An improved bound on Boolean matrix multiplication for highly clustered data, in: Proc. of WADS 2003, in: LNCS, vol. 2748,

2003, pp. 329–339.
[7] K. Green Larsen, R.R. Williams, Faster online matrix-vector multiplication, in: Proc. of SODA 2017, 2017, pp. 2182–2189.
[8] M. Henzinger, S. Krinninger, D. Nanongkai, T. Saranurak, Unifying and strengthening hardness for dynamic problems via the online matrix-vector

multiplication conjecture, in: Proc. of STOC 2015, 2015, pp. 21–30.
[9] M. Imase, B.M. Waxman, Dynamic Steiner tree problem, SIAM J. Discrete Math. 4 (3) (1991) 369–384.

[10] V. Vassilevska Williams, R. Williams, Subcubic equivalences between path, matrix, and triangle problems, J. ACM 65 (5) (September 2018) 27:1–27:38
(preliminary version FOCS 2010).

[11] R. Williams, Matrix-vector multiplication in sub-quadratic time (some preprocessing required), in: Proc. of SODA 2007, 2007, pp. 995–2001.
118

http://refhub.elsevier.com/S0022-0000(21)00002-7/bib0A40E3C91A3A55C9A37428C6D194D0E5s1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bib0A40E3C91A3A55C9A37428C6D194D0E5s1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bibCED89F5B90017B8F78F2AD2A9794C5E4s1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bibA6F5350F5A2B25A96D66757F761CE65Cs1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bibCA3A57B5EFAA2479C8A69291732AF63Es1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bibCA3A57B5EFAA2479C8A69291732AF63Es1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bib2469FAC281E1B05F64F0A0DC295A0581s1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bib2469FAC281E1B05F64F0A0DC295A0581s1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bibAD70939237C6F0D638FE79884D91449Bs1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bibAD70939237C6F0D638FE79884D91449Bs1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bibC17D19F7520BE36ADDBEB5D2C76AB7CFs1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bib24171C01C481FEEF0E038F10D7AB7D72s1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bib24171C01C481FEEF0E038F10D7AB7D72s1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bibE2F757A2CDC6FA6312EA71CE43A211B8s1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bibAA16396FE6C5CA9A6C888D4E3BD0BFD5s1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bibAA16396FE6C5CA9A6C888D4E3BD0BFD5s1
http://refhub.elsevier.com/S0022-0000(21)00002-7/bib5C6DC3D436504B7A65191CAFE28212EEs1

	Pushing the Online Boolean Matrix-vector Multiplication conjecture off-line and identifying its easy cases
	1 Introduction
	1.1 Our contributions
	1.2 Organization of the Paper

	2 Off-line conjectures
	2.1 Relationship between the AMv conjecture and the OMv conjecture
	2.2 Relaxing the OMv problem
	2.3 Combinatorial Boolean matrix product

	3 Easy cases of matrices and vectors for the conjectures
	3.1 Small spanning tree of the rows of the matrix (warming up)
	3.2 Small spanning tree of the input vectors

	4 Applications to graph queries
	5 Final remarks
	CRedit authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References

