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Henzinger et al. posed the so-called Online Boolean Matrix-vector Multiplication (OMv) 
conjecture and showed that it implies tight hardness results for several basic dynamic or 
partially dynamic problems [STOC’15]. We first show that the OMv conjecture is implied 
by a simple off-line conjecture that we call the MvP conjecture. We then show that if 
the definition of the OMv conjecture is generalized to allow individual (i.e., it might be 
different for different matrices) polynomial-time preprocessing of the input matrix, then 
we obtain another conjecture (called the OMvP conjecture) that is in fact equivalent 
to our MvP conjecture. On the other hand, we demonstrate that the OMv conjecture 
does not hold in restricted cases where the rows of the matrix or the input vectors are 
clustered, and develop new efficient randomized algorithms for such cases. Finally, we 
present applications of our algorithms to answering graph queries.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Henzinger et al. considered the following Online Boolean Matrix-vector Multiplication (OMv) problem in [8]. Initially, an 
(n × n)-Boolean matrix M is given. Then, for i = 1, ..., n, in the i-th round an n-dimensional Boolean column vector vi

is given and the task is to compute the product between M and vi before the next round. The objective is to design a 
(possibly randomized) algorithm that solves the OMv problem, i.e., that computes all the n products as quickly as possible. 
In [8], Henzinger et al. provided efficient reductions of the OMv problem to several basic dynamic or partially dynamic 
problems including subgraph connectivity, Pagh’s problem, d-failure connectivity, decremental single-source shortest paths, 
and decremental transitive closure.

The OMv conjecture was also introduced in [8]. To express it (as well as certain other conjectures below), we shall refer 
to an O (n3−ε) bound or an O (n2−ε) bound, where ε is a positive constant, as substantially sub-cubic or substantially sub-
quadratic, respectively.

✩ A preliminary version of this article has appeared in Proceedings of the 13th International Workshop on Frontiers in Algorithmics (FAW 2019), Lecture 
Notes in Computer Science, Vol. 11458, pp. 156–169, Springer Nature Switzerland AG, 2019.
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Fig. 1. The relationships between the conjectures.

Conjecture 1. OMv conjecture (Henzinger et al. [8]) There is no randomized algorithm that solves the OMv problem in substantially 
sub-cubic time with an error probability of at most 1/3.

Their conjecture implies tight hardness results for the aforementioned dynamic or partially dynamic problems [8].
As shown in [8], the OMv conjecture also implies the following conjecture called the Mv conjecture.

Conjecture 2. Mv conjecture (Henzinger et al. [8]) There is no randomized algorithm that after a polynomial-time universal prepro-
cessing of any (n × n)-Boolean matrix M computes the Boolean product of M with an arbitrary Boolean n-dimensional column vector 
in substantially sub-quadratic time with an error probability of at most 1/3.

The fastest known algorithm for the OMv problem is due to Green Larsen and Williams [7]. Their recent (non-
combinatorial) randomized algorithm runs in O (n3/2�(

√
log n)) time. Williams [11] has also shown that any (n × n)-Boolean 

matrix can be preprocessed in O (n2+ε) time so the Boolean product of the matrix with an arbitrary n-dimensional Boolean 
vector can be computed in O (n2/ log2 n) time. This implies that the Mv problem corresponding to the Mv conjecture admits 
an O (n2/ log2 n)-time solution. In another line of research, Chakraborty et al. [4] have recently established tight cell probe 
bounds for succinct Boolean matrix-vector multiplication.

We shall refer to a problem considered in a conjecture and consequently the conjecture as off-line or on-line depending 
on whether the whole input to the problem is given at the beginning or it is given in series of pieces, respectively. According 
to this convention, the OMv conjecture is on-line while the Mv conjecture is off-line. Still an off-line problem can have some 
on-line flavor, e.g., in the form of preprocessing.

1.1. Our contributions

In this paper, we introduce and study a number of related conjectures, whose relationships to each other and to previous 
work are summarized in Fig. 1. Formulating the conjectures, we shall distinguish between a universal preprocessing that can 
be applied to any Boolean square matrix and an individual preprocessing that can be applied only to a given Boolean square 
matrix. In other words, in the universal case there exists a uniform preprocessing algorithm applicable to all Boolean square 
matrices while in the individual case for each Boolean square matrix there exists a (not necessarily uniform) preprocessing 
algorithm.

We first prove that the OMv conjecture is implied by the following simple off-line conjecture that we call the MvP 
conjecture: For any constant ε > 0 and any polynomial p there is an (n ×n) Boolean matrix M that cannot be (individually) 
preprocessed in p(n) time such that the Boolean product of M with an arbitrary n-dimensional column vector v can be 
computed in O (n2−ε) time with an error probability of at most 1/3. To help us prove the implication, we introduce a 
variant called the AMv conjecture that turns out to be equivalent to the MvP conjecture. We also prove that if the OMv 
problem is relaxed by allowing for an individual polynomial-time preprocessing of the matrix M then the corresponding 
online conjecture (named OMvP) becomes equivalent to our MvP conjecture.

There is a subtle but important difference between our MvP conjecture and the Mv conjecture mentioned above: In 
our conjecture, the preprocessing is individual (not uniform) with respect to the matrices, while in the Mv conjecture, one 
considers a universal (uniform) preprocessing. It follows that the difficulty of proving/disproving the OMv conjecture lies 
between the two aforementioned off-line conjectures; namely, OMv is not more difficult than MvP and not easier than Mv.

We also observe that one of the techniques used above can be applied to the Combinatorial Boolean Matrix Multiplication 
(CBMM) conjecture. This conjecture states that there is no combinatorial (randomized) algorithm for the Boolean product 
of two (n × n)-Boolean matrices that runs in substantially subcubic time [2,8]. We show that if the CBMM conjecture is 
modified to allow for a polynomial-time universal preprocessing of one of the matrices, the resulting conjecture will still be 
equivalent to the original CBMM conjecture.

Next, by adapting known algorithms for Boolean matrix product of matrices with clustered data [3,5,6], we obtain a com-
binatorial randomized algorithm for the product of an (n × n)-Boolean matrix M and an arbitrary n-dimensional Boolean 
column vector v running in Õ (n + ST M) time after an O (n2)-time preprocessing of M , where ST M stands for the cost of a 
minimum spanning tree of the rows of M under the extended Hamming distance (never exceeding the Hamming distance). 
We present also a deterministic algorithm for the M v problem running in Õ (n + ST M) time after an O (n3)-time preprocess-
ing of M . Consequently, we obtain a combinatorial randomized algorithm for the OMv problem running in Õ (n(n + ST M))

time. We also show that OMv admits a combinatorial randomized algorithm running in Õ (n max{ST (V ), n1+o(1))) time, 
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where ST (V ) stands for the cost of a minimum spanning tree of the column vectors v1, ..., vn under the extended Ham-
ming distance. The time analysis of the latter algorithm relies in part on our analysis of an approximate nearest-neighbor 
online heuristic for the aforementioned minimum spanning tree.

The overwhelming majority of the reductions of the OMv problem to other dynamic or partially dynamic problems in 
[8] are unfortunately one-way reductions that do not yield applications of our algorithms for the OMv and Mv problems. 
Following the applications of the Mv problem given in [2,11], we provide analogous applications of our algorithms to 
vertex subset queries (e.g., for a given graph, such a query asks if a given subset of vertices is independent) and triangle 
membership queries.

1.2. Organization of the Paper

Section 2 introduces three new conjectures and shows implications and equivalences between them and the OMv con-
jecture. Its final subsection discusses the combinatorial Boolean matrix product. In Section 3, we develop new randomized 
algorithms for the OMv and Mv problems whose time complexity depends on the minimum cost of a spanning tree of the 
rows of the matrix or the input column vectors under the extended Hamming distance, and Section 4 presents applications 
of our algorithms to answering graph queries. Section 5 concludes with some final remarks.

2. Off-line conjectures

In this section, we introduce several new conjectures related to the OMv conjecture and study relationships between 
them and the OMv conjecture (see Fig. 1).

By the auxiliary Boolean Matrix-vector multiplication problem (AMv) we shall mean the problem of computing the product 
of a fixed (n × n)-Boolean matrix M , that can be (individually) preprocessed in O (n3−ε ) time for some fixed ε > 0, with 
an arbitrary n-dimensional Boolean column vector v . We first state the following conjecture corresponding to the AMv 
problem.

Conjecture 3. AMv conjecture There is no randomized algorithm that after an individual preprocessing of an (n × n)-Boolean ma-
trix M in substantially sub-cubic time computes the Boolean product of M with an arbitrary n-dimensional Boolean column vector v
in substantially sub-quadratic time with an error probability of at most 1/3.

Note that the AMv conjecture is an offline conjecture.

2.1. Relationship between the AMv conjecture and the OMv conjecture

Our first result states that the AMv conjecture implies the OMv conjecture.

Lemma 1. Let ε be a positive constant and let M be an (n × n)-Boolean matrix. If the OMv problem for M can be solved in O (n3−ε)

time with an error probability of at most 1/3 then the matrix M can be (individually) preprocessed in O (n3−ε) time such that the 
Boolean product of M with an arbitrary input n-dimensional Boolean column vector v can be computed in O (n2−ε) time with an error 
probability of at most 1/3. Consequently, the AMv conjecture implies the OMv conjecture.

Proof. Construct a sequence of n-dimensional Boolean vectors v1,....vn iteratively by picking as vi a vector that jointly with 
the preceding vectors maximizes the total time of the assumed OMv solution for v1, ..., vi . Since the assumed OMv solution 
for the whole sequence takes O (n3−ε) time, there must be i ∈ {1, ..., n} such that the product of M with vi is computed in 
O (n2−ε) time after computing the products of M with the preceding vectors in the sequence. The computation of all the 
products clearly takes O (n3−ε) time and it has an error probability of at most 1/3. By the definition of vi , if we compute 
instead of the product of M with vi , the product of M with an arbitrary n-dimensional input vector v , the computation 
will take only O (n2−ε) time after the products with the preceding vectors have been computed. Again, the computation of 
all the products, and hence in particular that of M with v , will have an error probability of at most 1/3. Since the vectors 
v1...vi−1 are fixed, the computation of the products of M with the preceding vectors can be regarded as an O (n3−ε )-time 
preprocessing. �

Unfortunately, we cannot show the reverse implication, i.e., that the OMv conjecture implies the AMv one like it implies 
the Mv conjecture [8]. The reason is that in the definition of the AMv problem, we do not require a universal preprocessing 
that could work for any matrix M of size n × n; we only require the existence of an individual preprocessing for a given M .

In the next lemma, we demonstrate that allowing for an arbitrary (individual) polynomial-time preprocessing instead of 
the substantially subcubic one yields a new problem that is still equivalent to the AMv one. This lemma and its proof idea 
of dividing the matrix and the vector into appropriate submatrices and subvectors are similar to Lemma 2.3 in [8] and its 
proof. The proof technique can be also credited to [10].
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Lemma 2. Let δ and ε be positive constants. If for any (n × n)-Boolean matrix M there is an O (n3+δ)-time individual preprocessing 
such that the product of M with an arbitrary n-dimensional Boolean column vector v can be computed in O (n2−ε) time with an error 
probability of at most 1/3 then there is a positive constant ε ′ such that after an O (n3−ε′

)-time individual preprocessing the product 
of M with such a vector v can be computed in O (n2−ε′

) time with an error probability of at most 1/3.

Proof. Divide M into n2α quadratic submatrices Mi, j of size n1−α × n1−α , where i, j ∈ {1, ..., nα}. Preprocess all the subma-
trices in O (n2α × (n1−α)3+δ) time. Then, the product of M with the vector v can be computed in O (n2α × (n1−α)2−ε +n1+α)

time. The last term in the expression represents the cost of summing the results of the products of the submatrices with 
respective subvectors of v of length n1−α . In order to obtain an exponent of the total preprocessing time in the form 3 − ε ′
and the exponent of computing the product in the form 2 −ε ′ , it is sufficient to solve the inequalities 2α+(1 −α)(3 +δ) < 3, 
2α + (1 − α)(2 − ε) < 2 and 1 + α < 2 with respect to α. Any α in the open interval ( δ

1+δ
, 1) satisfies these inequalities.

Following the proof of Lemma 2.3 in [8], we can keep the error probability below 1/3 by repeating the computation of 
each of the products of a submatrix of M with a respective vector O (log n) times, and picking the most frequent answer. In 
order to tackle the additional logarithmic factor in the time complexity, we can slightly decrease our ε ′ . �

We shall call the problem and the conjecture resulting from the AMv problem and the AMv conjecture by replacing an 
O (n3−ε) (individual) preprocessing time with a polynomial (individual) preprocessing time, the Boolean Matrix-vector multi-
plication with polynomial-time (individual) preprocessing problem and the Boolean Matrix-vector multiplication with polynomial-
time (individual) preprocessing conjecture (MvP for short), respectively.

Conjecture 4. MvP conjecture There is no randomized algorithm that after an individual polynomial-time preprocessing of an (n ×n)-
Boolean matrix M computes the Boolean product of M with an arbitrary n-dimensional Boolean column vector v in substantially 
sub-quadratic time with an error probability of at most 1/3.

Since the MvP conjecture trivially implies the AMv conjecture, Lemmas 1 and 2 give us the following theorem.

Theorem 1. The AMv and MvP conjectures are equivalent and they imply the OMv conjecture.

2.2. Relaxing the OMv problem

In this subsection, we consider generalized versions of the OMv problem and the OMv conjecture that allow for in-
dividual polynomial-time preprocessing of the matrix. We shall term them the OMvP problem and the OMvP conjecture, 
respectively. Our goal is to establish how the OMvP conjecture is related to the MvP and AMv conjectures.

The proof of the following lemma is analogous to that of Lemma 1.

Lemma 3. Let ε be a positive constant, and let M be an (n × n)-Boolean matrix. If the OMvP problem for M and any positive natural 
number n, after a polynomial-time (individual) preprocessing of M can be solved in O (n3−ε) time with an error probability of at most 
1/3 then the matrix M can be (individually) preprocessed in polynomial time such that the Boolean product of M with an arbitrary 
input n-dimensional Boolean column vector v can be computed in O (n2−ε) time with an error probability of at most 1/3. Consequently, 
the MvP conjecture implies the OMvP conjecture.

Proof. First, individually preprocess M in polynomial time following the lemma assumptions on OMvP. Then, construct a 
sequence of n-dimensional Boolean vectors v1,....vn iteratively by picking as vi a vector that jointly with the preceding 
vectors maximizes the total time of the assumed OMvP solution for v1, ..., vi . Since the assumed OMvP solution for the 
whole sequence takes O (n3−ε) time, there must be i ∈ {1, ..., n} such that the product of M with vi is computed in O (n2−ε)

time after computing the products of M with the preceding vectors in the sequence. The computation of the latter products 
clearly takes O (n3−ε) time and it has an error probability of at most 1/3. By the definition of vi , if we compute instead of 
the product of M with vi , the product of M with an arbitrary n-dimensional input vector v , the computation will take only 
O (n2−ε) time after the products with the preceding vectors are computed. Again, the computation of all the products, and 
hence in particular that of M with v , will have an error probability of at most 1/3. Since the vectors v1...vi−1 are fixed, the 
computation of the products of M with the preceding vectors jointly with the initial individual preprocessing of M forms a 
polynomial-time individual preprocessing of M . �

Now we are ready to show that the OMvP conjecture implies the AMv conjecture.

Lemma 4. Let ε be a positive constant, and let M be an (n × n)-Boolean matrix. If the AMv problem for M can be solved in O (n2−ε)

time with an error probability of at most 1/3 after an O (n3−ε) individual preprocessing of M then the OMvP problem for the matrix 
M and n Boolean column vectors can be solved in O (n3−ε) time with an error probability of at most 1/3. Consequently, the OMvP 
conjecture implies the AMv conjecture.
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Proof. Before computing the product of M with the first vector, perform the appropriate individual O (n3−ε) time prepro-
cessing of M . After that the product of M with each consecutive vector can be computed in O (n2−ε) time, so the total 
time for n vectors becomes O (n3−ε). We can keep the error probability below 1/3 for the whole sequence of input vectors 
similarly as in the proof of Lemma 2. �

According to Theorem 1, the AMv and MvP conjectures are equivalent. By applying Lemmas 3 and 4, we immediately 
obtain the following extension of Theorem 1. (See also the summary in Fig. 1.)

Theorem 2. The MvP, AMv, and OMvP conjectures are equivalent.

2.3. Combinatorial Boolean matrix product

Henzinger et al. showed in Lemma 2.3 in [8] that the possibility of universal bounded polynomial-time preprocessing 
in the OMv conjecture is not essential. By using a similar technique, we can also obtain a result of similar flavor for the 
Combinatorial Boolean Matrix Multiplication conjecture (CBMM). (For a definition of “combinatorial” in this setting, see, e.g., 
[2,8].) This well-known conjecture can be expressed as follows.

Conjecture 5. CBMM conjecture There is no randomized combinatorial algorithm that computes the Boolean product of two (n × n)-
Boolean matrices A and B in substantially subcubic time with an error probability of at most 1/3.

The proof of the following lemma is similar to that of Lemma 2.

Lemma 5. Let δ and ε be positive constants. If there is a combinatorial O (n3+δ)-time universal preprocessing of any (n × n)-Boolean 
matrix A such that the product of A with an arbitrary (n × n)-Boolean matrix B can be combinatorially computed in O (n3−ε) time 
with an error probability of at most 1/3 then there is an ε ′ > 0 such that the product of A with such a matrix B can be combinatorially 
computed in O (n3−ε′

) time with an error probability of at most 1/3.

Proof. Following the proof of Lemma 2, divide A into n2α quadratic submatrices Ai, j of size n1−α × n1−α , where 
i, j ∈ {1, ..., nα}. Preprocess all the submatrices in O (n2α × (n1−α)3+δ) time. Next, similarly divide B into n2α quadratic 
submatrices Bi, j of size n1−α × n1−α , where i, j ∈ {1, ..., nα}. Then, the product of A with the matrix B can be computed 
in O (n3α × (n1−α)3−ε + n2αn1−αnα) time. The last term in the expression represents the cost of summing the results of 
the n3α products of the submatrices. In order to obtain an exponent of the total preprocessing time in the form 3 − ε ′ and 
the exponent of computing the product in the form 3 − ε ′ it is sufficient to solve the inequalities 2α + (1 − α)(3 + δ) < 3, 
3α + (1 − α)(3 − ε) < 3 and 1 + 2α < 3 with respect to α. Any α in the open interval ( δ

1+δ
, 1) satisfies these inequalities.

We can keep the error probability below 1/3 analogously as in the proof of Lemma 2. �
We shall call the conjecture resulting from the CBMM conjecture by allowing a combinatorial universal polynomial-time 

preprocessing of one of the input matrices the CBMM with (polynomial-time) universal preprocessing conjecture, or CBMMUP 
for short. By Lemma 5 and the equality AB = (Bt At)t in case the second matrix is preprocessed, we obtain the following 
theorem.

Theorem 3. The CBMM and CBMMUP conjectures are equivalent.

3. Easy cases of matrices and vectors for the conjectures

In this section, we demonstrate that the OMv conjecture does not hold in restricted cases where the rows of the matrix 
or the input vectors are clustered, and develop some new efficient randomized algorithms for such cases.

Björklund et al. [3] proposed a method for multiplying two Boolean matrices by using a close approximation of the 
minimum spanning tree of the rows or columns of one of the matrices under the Hamming distance. Subsequently, the 
method has been generalized to include the so-called extended Hamming distance [6] and integer matrix multiplication [5]. 
In the first warming-up subsection, we present an explicit adaptation of the aforementioned generalizations to the case 
of the product of an (n × n)-Boolean (or 0 − 1) matrix M and an n-dimensional Boolean (or 0 − 1) column vector v in 
the context of the OMv conjecture. Several results presented in the first subsection can be regarded as implicit in [5,6]. 
This is not the case in the second subsection handling the online scenario where the input column vectors are clustered. 
Here, we have to develop a novel online approach involving among other things an analysis of an approximate nearest-
neighbor online heuristic for minimum spanning tree of the vectors under the extended Hamming distance. We shall use 
the following concepts in both subsections below.

Definition 1. For two 0 − 1 strings s = s1s2....sm and u = u1u2...um, their Hamming distance, i.e., the number of k ∈ {1, ..., m}, 
s.t., sk �= uk, is denoted by H(s, u). The extended Hamming distance, E H(s, u), between the strings is defined by a recursive equation 
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Fig. 2. An illustration of the extended Hamming distance between two strings s and u of equal length. Here, H(s, u) = 6 while E H(s, u) = 3. The three 
differentiating blocks are z1, z2, z3, with h(z1) = 1, h(z2) = 1, and h(z3) = −1.

E H(s, u) = E H(sl+1...sm, ul+1...um) + (s1 + u1 mod 2), where l is the maximum number such that s j = s1 and u j = u1 for j =
1, ..., l.

Note that the extended Hamming distance between two strings never exceeds the Hamming one and it better reflects 
the real cost of turning one of the strings into the other.

Definition 2. For two 0 − 1 strings s = s1s2....sm and u = u1u2...um, a differentiating block for s and u is a maximal consecutive 
subsequence z of 1, 2, ...m, such that either for each i ∈ z, si = 1 and ui = 0 hold, or for each i ∈ z, si = 0 and ui = 1 hold. In the first 
case, we denote h(z) = −1 and in the second case, h(z) = 1.

See Fig. 2 for an example.

3.1. Small spanning tree of the rows of the matrix (warming up)

For c ≥ 1 and a finite set S of points in a metric space, a c-approximate minimum spanning tree for S is a spanning tree in 
the complete weighted graph on S , with edge weights equal to the distances between the endpoints, whose total weight is 
at most c times the minimum.

Fact 4. (Lemma 3 in [6]) For ε > 0, a (2 + ε)-approximate minimum spanning tree for a set of n 0 − 1 strings of length d under the 
extended Hamming metric can be computed by a Monte Carlo algorithm in time O (dn1+1/(1+ε/2)).

By selecting ε = 2 log n, we obtain the following lemma.

Lemma 6. Let M be an (n × n)-Boolean matrix. An O (logn)-approximation minimum spanning tree for the set of rows of M under 
the extended Hamming distance can be constructed by a Monte Carlo algorithm in O (n2) time.

We shall also use the following data structure, easily obtained by computing all prefix sums:

Fact 5. (e.g., see [5]) For a sequence of integers a1, a2 ,. . . ,an, one can construct a data structure that supports a query asking for reporting 
the sum 

∑ j
k=i ak for 1 ≤ i ≤ j ≤ n in O (1) time. The construction takes O (n) time.

By using Lemma 6 and Fact 5, we obtain the following algorithm (Algorithm 1) for computing the arithmetic product of 
the input Boolean matrix M and Boolean vector v interpreted as 0 − 1 ones. Observe that the aforementioned arithmetic 
product immediately yields the corresponding Boolean one.

Definition 3. For an (n ×n)-Boolean matrix A, let ST A stand for the minimum cost of a spanning tree of rowi(A), i ∈ {1, ..., n}, under 
the extended Hamming distance.

Lemma 7. Algorithm 1 runs in Õ (n2 + ST M) time with high probability. If Steps 1, 2, 3 are treated as a preprocessing of the matrix M
then it runs in Õ (n + ST M) time with high probability after an O (n2)-time preprocessing.

Proof. The approximate minimum spanning tree T in Step 1 can be constructed by a Monte Carlo algorithm in O (n2)

time by Lemma 6. Its traversal can be found in O (n) time. Since the length of the traversal is linear in n, Step 2 can 
be easily implemented in O (n2) time. Step 3 takes O (n) time by Fact 5. Finally, based on Step 2, Step 4 (b)-iii takes 
Õ (1 + E H(rowi(M), rowl(M))) time. Let U stand for the set of directed edges forming the traversal of the spanning tree T . 
It follows that Step 4 (b) can be implemented in Õ (n + ∑

(i,l)∈U E H(rowi(M), rowl(M))) time, i.e., in Õ (n + ST M) time by 
Lemma 6. Consequently, Step 4 takes Õ (n + ST M) time. �

By Lemma 7, we obtain:
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Algorithm 1
Input: An (n × n)-Boolean matrix M and an n-dimensional Boolean column vector v .

Output: The arithmetic product c = (c1, ..., cn) of M and v interpreted as a 0 −1 matrix and a 0 −1 vector, respectively.

1. Find an O (log n)-approximate spanning tree T for the rows rowi(M), i = 1, . . . , n, of M under the extended 
Hamming distance and a traversal (i.e., a not necessarily simple path visiting all vertices) of T .

2. For each pair (rowi(M), rowl(M)), where the latter row follows the former in the traversal, find a set S of the 
differentiating blocks for rowi(M) and rowl(M) as well as the differences h(s) (1 or −1) between the common 
value of each entry in Ml,min s, . . . , Ml,max s and the common value of each entry in Mi,min s, . . . , Mi,max s for each 
s ∈ S .

3. Initialize a data structure D for counting partial sums of the values of coordinates on continuous fragments of 
the vector v .

4. Iterate the following steps:
(a) Compute cq where q is the index of the row from which the traversal of T starts.
(b) While following the traversal of T , iterate the following steps:

i. Set i, l to the indices of the previously traversed row and the currently traversed row, respectively.
ii. Set cl to ci .

iii. For each differentiating block s for rowi(M) and rowl(M), compute 
∑

k∈s vk using D and set cl to cl +
h(s) 

∑
k∈s vk .

5. Output the vector (c1, c2, ..., cn)

Theorem 6. The Boolean product c of an (n × n)-Boolean matrix M and an n-dimensional Boolean column vector v can be computed 
by a randomized algorithm in Õ (n + ST M) time with high probability after O (n2)-time preprocessing.

Proof. The correctness of Algorithm 1 follows from the observation that a differentiating block s for rowi(M) and rowl(M)

yields the difference h(s) 
∑

k∈s vk between cl and ci just on the fragment corresponding to Mi,min s, . . . , Mi,max s and 
Ml,min s, . . . , Ml,max, respectively. Lemma 7 yields the upper bounds in terms of ST M . �

We can compute the exact minimum spanning tree of the rows of the matrix M under the extended Hamming distance 
by computing extended Hamming distances between all pairs of rows of M in O (n3) time. Hence by replacing the random-
ized approximate computation of the minimum spanning tree with the deterministic exact one in Algorithm 1, we obtain 
the following theorem.

Theorem 7. The Boolean product c of an (n × n)-Boolean matrix M and an n-dimensional Boolean column vector v can be computed 
deterministically in Õ (n + ST M) time after O (n3)-time preprocessing.

Corollary 1. The OMv problem for an (n × n)-Boolean matrix can be solved by a randomized algorithm in Õ(n(n + ST M)) time with 
high probability while the Mv problem can be solved by a randomized algorithm in Õ (n + ST M) time with high probability after 
O (n2)-time preprocessing or it can be solved deterministically in Õ(n + ST M) time after O (n3)-time preprocessing.

3.2. Small spanning tree of the input vectors

In this subsection, we assume an online scenario where besides the Boolean matrix there is given a sequence of n-
dimensional Boolean vectors received one at a time. In order to specify and analyze our algorithm (Algorithm 2), we need 
the following concepts and facts related to them.

Definition 4. For a metric space P and a point q ∈ P , a c-approximate nearest neighbor of q in P is a point p ∈ P different from q
such that for all p′ ∈ P , p′ �= q, dist(p, q) ≤ c × dist(p′, q). The ε-approximate nearest neighbor search problem (ε-NNS) in P is to 
find for a query point q ∈ P a (1 + ε)-approximate nearest neighbor of q in P .

Fact 8. (See the third row in Table 4.3.1.1 in [1]) For ε > 0, there is a Monte Carlo algorithm for the dynamic (i.e., supporting point 
insertions and deletions) ε-NNS in {0, 1}d under the Hamming metric which requires O (d�

1
1+2ε +o(1)) query time and O (d�

1
1+2ε +o(1))

update time, where � is the maximum number of stored vectors in {0, 1}d.

Fact 9. [6] There is a simple, linear-time, transformation of any 0 − 1 string w into the string t(w) such that for any two 0 − 1 strings 
s and u, E H(s, u) = � H(t(s),t(u)) 	.
2
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Note that the size of t(w) is linear in that of w by the linear-time complexity of the transformation. By combining 
Facts 8 and 9, we obtain the following corollary.

Corollary 2. There is a randomized Monte Carlo algorithm for a dynamic O (log�)-NNS in {0, 1}d under the extended Hamming metric 
which requires O (d�o(1)) query time and O (d�o(1)) update time.

Our online algorithm is as follows.

Algorithm 2
Input: Given a priori an (n × n)-Boolean matrix M and an online sequence of n-dimensional Boolean vectors 
v1, v2, ..., v� , received one at a time.

Output: For i = 1, ..., �, the arithmetic product ci = (ci
1, ..., c

i
n) = M vi of M and vi , treated as a 0-1 matrix and a 0-1 

column vector, is output before receiving vi+1.

1. For j = 2, . . . , n, initialize a data structure D j that for any interval u ⊆ {1, ..., n} reports 
∑

k∈u M[ j, k] using Fact 5.
2. Receive the first vector v1 and compute the arithmetic product c1 = (c1

1, ..., c
1
n) of M with v1 by the definition of 

matrix-vector multiplication.
3. For i = 2, . . . , �, receive the i-th vector vi = (vi

i, ..., v
i
n) and iterate the following steps:

(a) Find an O (log �)-approximate nearest neighbor vm of vi in the set {v1, ..., vi−1}.
(b) Determine the differentiating blocks s and the differences h(s) for vm and vi .
(c) For j = 1, . . . , n iterate the following steps.

i. Set ci
j to cm

j .
ii. For each differentiating block s of vm and vi iterate the following steps.

A. Compute 
∑

k∈s M[ j, k] using D j .
B. Set ci

j to ci
j + h(s) 

∑
k∈s M[ j, k].

(d) Output ci = (ci
1, ..., c

i
n)

The following lemmas analyze the time complexity of Algorithm 2. The first lemma is a direct consequence of Corollary 2.

Lemma 8. There is a randomized Monte Carlo algorithm for a dynamic O (log�)-NNS in {0, 1}d under the extended Hamming metric 
such that:

• The insertions of the vectors v1 through v� in Algorithm 2 can be implemented in O (n�1+o(1)) total time.
• The O (log�)-approximate nearest neighbors of vi , i = 2, ..., �, in {v1, ..., vi−1}, in Step 3 (a) of Algorithm 2 can be found with 

high probability in O (n�1+o(1)) total time.

Proof. By Corollary 2, the � − 1 updates and � − 2 O (log�)-approximate nearest neighbor queries take O (n�1+o(1)) total 
time. �
Lemma 9. Algorithm 2 can be implemented in time Õ(n(�1+o(1) + ∑�

i=2 min{dist(vi, v j)| j < i})).

Proof. Step 1 can be implemented in O (n2) time by Fact 5 while Step 2 can be trivially done in O (n2) time by the 
definition. Step 3 (a) takes t(i) time, where t(i) is the time taken by finding an O (log �)-approximate neighbor of vi in 
{v1, v2, ..., vi−1} and inserting vi in the dynamic data structure supporting the O (log �)-approximate neighbor queries, with 
high probability. The differentiating blocks s and the differences h(s) for vm and vi can be easily determined in O (n) time 
in Step 3 (b). Since the number of the aforementioned blocks is within a polylogarithmic factor of min{dist(vi, v j)| j < i}, 
the whole update of cm to ci in Step 3 (c) takes Õ (n(1 + min{dist(vi, v j)| j < i})) time. Finally, it follows from Lemma 8 that 
∑�

i=2 t(i) = O (n�1+o(1)). �
To pursue our time analysis of Algorithm 2, we need to show 

∑�
i=2 min{dist(vi, v j)| j < i} = Õ (ST (V )), where ST (V )

is the minimum cost of the spanning tree of the vectors in V = {v1, v2, ..., v�} under the extended Hamming distance. For 
this purpose, we shall analyze the following simple heuristic for an online variant of the minimum spanning tree problem 
(MST).
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Approximate Nearest-Neighbor Heuristic for MST

Input: an online sequence V of points (in particular, vectors) v1, v2, .... received one at a time.

Output: a sequence of spanning trees Ti of the points v1 through vi constructed before receiving vi+1 for all i > 1.

1. Set T1 to the singleton tree {v1};
2. for each received point vi, i > 1 do

(a) find an f (i)-approximate nearest neighbor u of vi in the set of points received so far;
(b) let Ti be the spanning tree Ti−1 built for points received before vi and expand it by {u, vi};
(c) output Ti .

Theorem 10. Assume that the function f is not decreasing and the input points to the approximate nearest-neighbor heuristic for MST 
are drawn from a metric space. The spanning tree constructed by the heuristic for the first t points has cost not exceeding �log2 t	 f (t)
times the minimum.

Proof. Assume first that t is a power of two. Let V = {v1, ..., vt} be the sequence of t points received, where vi is the i-th 
point received.

Consider a minimum cost perfect matching P of V (recall that V is even). For each edge {vi, v j} in P , where i < j, the 
cost of connecting v j to the current spanning tree T j−1 of v1 through v j−1 does not exceed f (t) ×dist(vi, v j). Thus, for t/2
points vl in V , the accumulated cost of connecting them to the current spanning tree Tl−1 does not exceed the total cost of 
P times f (t). Note that the total cost of P is not greater than half the minimum cost T S P (V ) of the traveling salesperson 
tour of V . Simply, the tour can be decomposed into two perfect matchings of V .

In order to estimate from above the cost of connecting the remaining t/2 points to the current spanning trees, we iterate 
our argument.

Thus, let V 1 denote the remaining set of points and let P1 be their minimum-cost perfect matching. We can again 
estimate the cost of connecting half of the t/2 points in V 1 to the current spanning trees by the cost of P1 times f (t). 
On the other hand, we can estimate the cost of P1 by 1

2 T S P (V 1) ≤ 1
2 T S P (V ). We handle analogously the remaining t/4

points and so on. After log2 t iterations, we are left with the first point, and can estimate the total cost of connecting all 
other points to the current spanning trees by log2 t × f (t)T S P (V )/2. On the other hand, by the doubling MST heuristic, we 
know that T S P (V ) is at most twice the cost ST (V ) of minimum-cost spanning tree of V . We conclude that the cost of the 
spanning tree of V constructed by the approximate nearest-neighbor heuristic does not exceed log2 t × f (t)ST (V ).

If t is not a power of two, we have to consider minimum-cost maximum cardinality matchings instead of minimum-cost 
perfect matchings. Let t′ = 2�log2 t	 . Observe that the number of the remaining points after each iteration when we start 
with a sequence S of t points will be not greater than that when we start with a sequence S ′ of t′ points, where S ′ is an 
extension of the sequence S . This completes the proof of the �log2 t	 f (t)ST (V ) upper bound. �

In the special case when f ( ) ≡ 1, our online heuristic for MST in a way coincides with the greedy one for incremental 
minimum Steiner tree from [9], which on weighted graphs satisfying the triangle inequality could fairly easily be adapted 
to consider received vertices only. Hence, in this case a logarithmic upper bound on approximation factor could be also 
deduced from Theorem 3.2 in [9]. By combining Lemma 9 with Theorem 10, we obtain our main result in this section.

Theorem 11. Let M be an (n × n)-Boolean matrix. For an online sequence V of n-dimensional Boolean vectors v1, v2, ..., v� received 
one at a time, the Boolean products M vi of M and vi can be computed before receiving vi+1 in total time Õ (n(�1+o(1) + ST (V )))

with high probability by a randomized algorithm, where ST (V ) is the minimum cost of the spanning tree of the vectors in V under the 
extended Hamming distance.

Proof. The correctness of Algorithm 2 follows from the observation that a differentiating block s for vm and vi yields the 
difference h(s) 

∑
k∈s M[ j, k] between cm

j and cu
j just on the fragments vm

min s, . . . , v
m
i,max s and vi

min s, . . . , v
i
max s , respectively. 

By Theorem 10, we have 
∑�

i=2 min{dist(vi, v j)| j < i} = Õ (ST (V )). Now it is sufficient to plug the latter estimation in the 
upper time bound of Lemma 9 to complete the proof. �
4. Applications to graph queries

Suppose that we are given a graph G = (V , E) on n vertices and a subset S of V . In [11] Williams observed that the 
questions if S is a dominating set, an independent set, or a vertex cover in G , can be easily answered by computing the 
Boolean product of the adjacency matrix of G with appropriate Boolean vectors. Hence, he could conclude (Corollary 3.1 
in [11]) that these questions can be answered in O (n2/(ε log n)2) time after an O (n2+ε) preprocessing of G by using his 
method of multiplying an (n × n)-Boolean matrix with an n-dimensional column vector in O (n2/(ε log n)2) time after an 
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O (n2+ε)-time preprocessing of the matrix. By plugging in our method of Boolean matrix-vector multiplication (Theorem 6) 
instead, we obtain the following result.

Corollary 3. A graph G on n vertices can be preprocessed in O (n2) time such that one can determine if a given subset of vertices in G
is a dominating set, an independent set, or a vertex cover of G in Õ (n + STG) time with high probability, where ST G is the minimum 
cost of a spanning tree of the rows of the adjacency matrix of G under the extended Hamming distance. Using the same preprocessing, 
one can determine if a query vertex belongs to a triangle in G in Õ (n + STG) time with high probability.

Proof. A subset S of vertices in G can be represented by an n-dimensional Boolean column vector w with 1 on the j-th 
coordinate iff the j-th vertex belongs to S . Then, as Williams observed in [11], S is independent in G iff the vector u
resulting from multiplying the adjacency matrix of G with w has zeros on the coordinates corresponding to the vertices 
in S . Next, S is a dominating set of G iff each vertex in V \ S has a neighbor in S , i.e., iff u has ones on the coordinates 
corresponding to vertices in V \ S . Furthermore, S is a vertex cover of G iff V \ S is an independent set of G , i.e., iff 
the vector resulting from multiplying the adjacency matrix of G with the complement of w has zeros on the coordinates 
corresponding to the vertices in V \ S . Finally, Williams also observed that the problem of determining if a query vertex v
belongs to a triangle in a given graph reduces to checking the set of neighbors of v for independence (see Corollary 3.2 in 
[11]).

Hence, it is sufficient to plug in our solution to matrix-vector multiplication given in Theorem 6 to obtain the corollary. 
The preprocessing of G consists only of the construction of its adjacency matrix and a logarithmic approximation of ST G
in O (n2) time. Note also that the extended Hamming distance between two 0-1 strings is equal to the extended Hamming 
distance between the complements of these two strings. Thus, the upper bound in terms of ST G is also valid in case of 
vertex cover. �

To obtain corresponding applications of the results from subsection 3.2, we need to consider the online versions of the 
graph subset queries. Thus, we are given a graph G on n vertices and an online sequence of subsets S1,...,S� of vertices in 
G . The task is to preprocess G first and then to determine for i = 1, ..., �, if Si is a dominating set, an independent set, 
or a vertex cover of G , respectively, before Si+1 has been received. Analogously, we obtain the following online version of 
Corollary 3 by plugging in Theorem 11 instead of Theorem 6.

Corollary 4. A graph G on n vertices can be preprocessed in O (n2) time such that for an online sequence S of subsets S1 ,...,S� of 
vertices in G, for i = 1, ..., �, one can determine if Si is a dominating set, an independent set, or a vertex cover of G before receiving 
Si+1 (in i < � case) in Õ (n(�1+o(1) + ST S )) total time with high probability, where ST S is the minimum cost of a spanning tree of the 
characteristic vectors representing the subsets in S under the extended Hamming distance. Using the same preprocessing, for an online 
sequence v1, ..., v� of query vertices, for i = 1, ..., �, one can determine if vi belongs to a triangle in G before receiving vi+1 (in case 
i < �) in Õ (n(�1+o(1) + ST�)) total time with high probability, where ST� is the minimum cost of a spanning tree of the � characteristic 
vectors representing the sets of neighbors of the vertices under the extended Hamming distance.

5. Final remarks

Our results in Section 3 imply that to prove the OMv, AMv, and MvP conjectures, it suffices to consider (n × n)-Boolean 
matrices where ST M is almost quadratic in n.

Interestingly enough, our approximate nearest-neighbor heuristic for MST combined with the standard MST doubling 
and shortcutting techniques immediately yields a corresponding online heuristic for TSP in metric spaces. By Theorem 10, 
it provides TSP tours T S P s of length at most 2�log2 s	 f (s) times larger than the optimum, where s is the number of 
input vectors and f (s) is an upper bound on the approximation factor in the approximate nearest neighbor subroutine. The 
resulting TSP heuristic for i = 2, ... simply finds an f (i)-nearest neighbor u of the new vector vi and replaces the edge 
between u and its predecessor w by the path {w, vi}, {vi, u} in T S Pi−1 in order to obtain T S Pi .

CRedit authorship contribution statement

All the co-authors have contributed to this paper.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have 
appeared to influence the work reported in this paper.

Acknowledgments

Thanks go to the anonymous reviewers for their valuable comments. The authors were supported in part by Swedish 
Research Council grant 621-2017-03750. JJ was also supported by PolyU Fund 1-ZE8L.
117
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