
ar
X

iv
:2

50
3.

19
63

1v
2

 [
cs

.D
S]

 2
3

A
pr

 2
02

5

Multiplication of 0-1 matrices via clustering

Jesper Jansson1, Mirosław Kowaluk2, Andrzej Lingas3, and Mia Persson4

1 Graduate School of Informatics, Kyoto University, Kyoto, Japan.
jj@i.kyoto-u.ac.jp

2 Institute of Informatics, University of Warsaw, Warsaw, Poland.
kowaluk@mimuw.edu.pl

3 Department of Computer Science, Lund University, Lund, Sweden.
Andrzej.Lingas@cs.lth.se

4 Department of Computer Science and Media Technology, Malmö University,
Malmö, Sweden. Mia.Persson@mau.se

Abstract. We study applications of clustering (in particular the k-
center clustering problem) in the design of efficient and practical deter-
ministic algorithms for computing an approximate and the exact arith-
metic matrix product of two 0-1 rectangular matrices A and B with
clustered rows or columns, respectively. Let λA and λB denote the min-
imum maximum radius of a cluster in an ℓ-center clustering of the rows
of A and in a k-center clustering of the columns of B, respectively. In
particular, when A and B are square matrices of size n × n, we obtain
the following results.

1. A simple deterministic algorithm that approximates each entry of
the arithmetic matrix product of A and B within an additive error
of at most 2λA in O(n2ℓ) time or at most 2λB in O(n2k) time.

2. A simple deterministic preprocessing of the matrices A and B in
O(n2ℓ) time or O(n2k) time after which every query asking for the
exact value of an arbitrary entry of the arithmetic matrix product of
A and B can be answered in O(λA) time or O(λB) time, respectively.

3. A simple deterministic algorithm for the exact arithmetic matrix
product of A and B running in time O(n2(ℓ+ k +min{λA, λB})).

Keywords: arithmetic matrix multiplication, clustering, Hamming space,
minimum spanning tree

http://arxiv.org/abs/2503.19631v2

1 Introduction

The arithmetic matrix product of two 0-1 matrices is closely related to the
Boolean one of the corresponding Boolean matrices. For square n × n matri-
ces, both can be computed in O(n2.372) time [1,23]. Both are basic tools in
science and engineering. Unfortunately, no truly subcubic practical algorithms
for any of them are known. Therefore, many researchers studied the complexity
of these products for special input matrices, e.g., sparse or structured matrices
[3,4,11,15,21,24], providing faster and often more practical algorithms.

The method of multiplying matrices with clustered rows or columns, proposed
for Boolean matrix product in [4] and subsequently generalized in [11,15] and
used in [2], relies on the construction of an approximate spanning tree of the
rows of the first input matrix or the columns of the second input matrix in
a Hamming space. Then, each column or each row of the product matrix is
computed with the help of a traversal of the tree in time proportional to the total
Hamming cost of the tree up to a logarithmic factor. Simply, the next entry in
a column or a row in the product matrix can be obtained from the previous one
in time roughly proportional to the Hamming distance between the consecutive
(in the tree traversal) corresponding rows or columns of the first or the second
input matrix, respectively. Thus, in case the entire tree cost is substantially
subquadratic in n, the total running time of this method becomes substantially
subcubic provided that a good approximation of a minimum spanning tree of
the rows of the first input matrix or the columns of the second one can be
constructed in a substantially subcubic time. As for simplicity and practicality,
a weak point of this method is that in order to construct such an approximation
relatively quickly, it employs a randomized dimension reduction.

In case of the arithmetic matrix product of 0-1 matrices, in some cases, a
faster approximate arithmetic matrix multiplication can be more useful [8,21].
Among other things, it can enable to identify largest entries in the product
matrix and it can be also used to provide a fast estimation of the number of:
the so called witnesses for the Boolean product of two Boolean matrices [14],
triangles in a graph, or more generally, subgraphs isomorphic to a small pattern
graph [12] etc. There is a number of results on approximate arithmetic matrix
multiplication, where the quality of approximation is expressed in terms of the
Frobenius matrix norm || ||F (i.e., the square root of the sum of the squares of
the entries of the matrix) [8,21].

Cohen and Lewis [8] and Drineas et al. [9] used random sampling to approx-
imate arithmetic matrix product. Their papers provide an approximation D of
the matrix product AB of two n×n matrices A and B such that ||AB−D||F =
O(||AB||F /

√
c), for a parameter c > 1 (see also [21]). The approximation algo-

rithm in [9] runs in O(n2c) time. Drineas et al. [9] also derived bounds on the en-
trywise differences between the exact matrix product and its approximation. Un-
fortunately, the best of these bounds is Ω(M2n/

√
c), where M is the maximum

value of an entry in A and B. By using a sketch technique, Sarlós [22] obtained
the same Frobenius norm guarantees, also in O(n2c) time. However, he derived
stronger individual upper bounds on the additive error of each entry Dij of the

2

approximation matrix D. They are of the form O(||Ai∗||2||B∗j ||2/
√
c), where

Ai∗ and B∗j stands for the i-th row of A and the j-th column of B, respectively,
that hold with high probability. More recently, Pagh [21] presented a randomized
approximation Õ(n(n + c))-time algorithm for the arithmetic product of n × n
matrices A and B such that each entry of the approximate matrix product differs
at most by ||AB||F /

√
c from the correct one. His algorithm first compresses the

matrix product to a product of two polynomials and then uses the fast Fourier
transform to multiply the polynomials. Subsequently, Kutzkov [20] developed
analogous deterministic algorithms employing different techniques. For approx-
imation results related to sparse arithmetic matrix products, see [19,21].

1.1 Our contributions

In this paper, we exploit the possibility of applying the classic simple
2-approximation algorithm for the k center clustering problem [16] in order to
derive efficient and practical deterministic algorithms for computing an approx-
imate and the exact arithmetic matrix product of two 0-1 rectangular matrices
A and B with clustered rows or columns, respectively.

The k-center clustering problem in a Hamming space {0, 1}d is for a set
P of n points in {0, 1}d to find a set T of k points in {0, 1}d that minimize
maxv∈P minu∈T ham(v, u), where ham(v, u) stands for the Hamming distance
between v and u, (i.e., the number of coordinate positions they differ from each
other). Each center in T induces a cluster consisting of all points in P for which
it is the nearest center.

Let λA and λB denote the minimum maximum radius of a cluster in an ℓ-
center clustering of the rows of A or in a k-center clustering of the columns of
B, respectively. Assuming that A and B are of sizes p× q and q× r, respectively,
we obtain the following results.

1. A simple deterministic algorithm that approximates each entry of the arith-
metic matrix product of A and B within an additive error of at most 2λA

in O(pqℓ + pr) time if p ≥ r or at most 2λB in O(qrk + pr) time if p ≤ r.
2. A simple deterministic preprocessing of the matrices A and B in O(pqℓ+pr)

time if p ≥ r or O(qrk+ pr) time if p ≤ r after which every query asking for
the exact value of an arbitrary entry of the arithmetic matrix product of A
and B can be answered in O(λA) time if p ≥ r or O(λB) time if p ≤ r.

3. A simple deterministic algorithm for the exact arithmetic matrix product of
A and B running in time O(pqℓ + rqk +min{prλA + rqℓ, prλB + pqk}).

1.2 Techniques

All our main results rely on the classical, simple 2-approximation algorithm
for the k-center clustering problem (farthest-point clustering) due to Gonzalez
[16] (see also Fact 1). Two of them rely also on the idea of updating the inner
product of two vectors a and b in {0, 1}q over the Boolean or an arithmetic
semi-ring to that of two vectors a′ and b′ in {0, 1}q, where a = a′ or b = b′, in

3

time roughly proportional to ham(a, a′) + ham(b, b′). The idea has been used in
[4,11,15]. As in the aforementioned papers, we combine it with a traversal of an
approximate minimum spanning tree of the rows or columns of an input matrix
in the Hamming space {0, 1}q, where q is the length of the rows or columns (see
also Lemma 6).

1.3 Paper organization

The next section contains basic definitions. Section 3 presents our approximation
algorithm for the arithmetic product of two 0-1 matrices and the preprocessing
enabling efficient answers to queries asking for the value of an arbitrary entry
of the arithmetic product matrix. Section 4 is devoted to our algorithm for the
exact arithmetic matrix product of two 0-1 matrices. We conclude with a short
discussion on possible extensions of our results.

2 Preliminaries

For a positive integer r, [r] stands for the set of positive integers not exceeding
r.

The transpose of a matrix D is denoted by D⊤. If the entries of D are in
{0, 1} then D is a 0-1 matrix.

The Hamming distance between two points a, b (vectors) in {0, 1}d is the
number of the coordinates in which the two points differ. Alternatively, it can
be defined as the distance between a and b in the L1 metric over {0, 1}d. It is
denoted by ham(a, b).

The k-center clustering problem in a Hamming space {0, 1}d is as follows:
given a set P of n points in {0, 1}d, find a set T of k points in {0, 1}d that
minimize maxv∈P minu∈T ham(v, u).

The minimum-diameter k-clustering problem in a Hamming space {0, 1}d
is as follows: given a set P of n points in {0, 1}d, find a partition of P into
k subsets P1, P2, . . . , Pk that minimize maxi∈[k] maxv,u∈Pi

ham(v, u). Note that
the k-center clustering problem could be also termed as the minimum-radius k-
clustering problem. It is known to be NP-hard and even NP-hard to approximate
within 2− ǫ for any constant ǫ > 0 [10,13].

Fact 1 [16] Let P be a set of n points in {0, 1}d, and let k ∈ [n]. There is a
simple deterministic 2-approximation algorithm for the k-center clustering and
minimum-diameter k-clustering problems running in O(ndk) time.

3 An approximate arithmetic matrix product of 0-1

matrices

Our approximation algorithm for the arithmetic matrix product of two 0-1 ma-
trices is specified by the following procedure.

4

procedure APPROXMMCLUS(A,B, ℓ)
Input: Two 0-1 matrices A and B of sizes p × q and q × r, respectively, where
p ≥ r, and a positive integer ℓ not exceeding p.
Output: A p × r matrix D, where for 1 ≤ i ≤ p and 1 ≤ j ≤ r, Dij is an
approximation of the inner product Cij of the i-th row Ai∗ of A and the j-th
column B∗j of B.

1. Determine an approximate ℓ-center clustering of the rows of the matrix A
in {0, 1}q. For each row Ai∗ of A, set cenℓ(Ai∗) to the center of the cluster
in the ℓ-clustering to which Ai∗ belongs.

2. Form the ℓ × q matrix A′, where the i′-th row is the i′-th center in the
approximate ℓ-center clustering of the rows of A.

3. Compute the arithmetic ℓ× r matrix product C′ of A′ and B.
4. For 1 ≤ i ≤ p and 1 ≤ j ≤ r, set Dij to C′

i′j , where the i′-th row A′
i′∗ of A′

is cenℓ(Ai∗).

For a 0-1 p× q matrix A, let λ(A, ℓ, row) be the minimum, over all ℓ-center
clusterings of the rows of A in the Hamming space {0, 1}q, of the maximum
Hamming distance between a center of a cluster and a member of the cluster.
Similarly, for a 0-1 q × r matrix B, let λ(B, k, col) be the minimum, over all
k-center clusterings of the columns of B in the Hamming space {0, 1}q, of the
maximum Hamming distance between a center of a cluster and a member of the
cluster.

Lemma 1. Suppose a 2-approximation algorithm for the ℓ-center clustering is
used in APPROXMMCLUS(A,B, ℓ) and C stands for the arithmetic product
of A and B. Then, for 1 ≤ i ≤ p and 1 ≤ j ≤ r, |Cij −Dij | ≤ 2λ(A, ℓ, row).

Proof. Recall that p ≥ r is assumed in the input to APPROXMMCLUS(A,B, ℓ).
For 1 ≤ i ≤ p and 1 ≤ j ≤ r, Dij is the inner product of cenℓ(Ai∗), where
ham(Ai∗, cenℓ(Ai∗)) ≤ 2λ(A, ℓ, row), with B∗j . Hence, Cij , which is the inner
product of Ai∗ with B∗j , can differ at most by 2λ(A, ℓ, row) from Dij . ⊓⊔

By T (s, q, t), we shall denote the worst-case time taken by the multiplication
of two 0-1 matrices of sizes s× q and q × t, respectively.

Lemma 2. APPROXMMCLUS(A,B, ℓ) can be implemented in
O(pqℓ + pr + T (ℓ, q, r)) time.

Proof. Recall that p ≥ r. Step 1, which includes the assignment of the closest
center to each row of A, can be done in O(pqℓ) time by using Fact 1, i.e., the
classic algorithm of Gonzalez [16]. Step 2 takes O(ℓq) time, which is O(T (ℓ, q, r))
time. Finally, Step 3 takes T (ℓ, q, r) time while Step 4 can be done in O(pr) time.
Thus, the overall time is O(pqℓ + pr + T (ℓ, q, r)). ⊓⊔

We can use the straightforward O(sqt)-time algorithm for the multiplication
of two matrices of sizes s× q and q× t, respectively. Since T (ℓ, q, r) = O(ℓqr) =
O(ℓqp) if p ≥ r, Lemmata 1 and 2 yield the first part (1) of our first main

5

result (Theorem 1 below), for p ≥ r. Its second part (2) for p ≤ r follows from
the first part by (AB)⊤ = B⊤A⊤. Note that then the number of rows in B⊤,
which is r, is not less than the number of columns in A⊤, which is p. Simply, we
run APPROXMMCLUS(B⊤, A⊤, k) in order to compute an approximation of
the transpose of the arithmetic matrix product of A and B. Note also that a
k-clustering of columns of B is equivalent to a k-clustering of the rows of B⊤

and that λ(B⊤, k, row) = λ(B, k, col).

Theorem 1. Let A and B be two 0-1 matrices of sizes p× q and q × r, respec-
tively. There is a simple deterministic algorithm which provides an approxima-
tion of all entries of the arithmetic matrix product of A and B within an additive
error of at most:

1. 2λ(A, ℓ, row) in time O(pqℓ + pr) if p ≥ r,
2. 2λ(B, k, col) in time O(rqk + pr) if p ≤ r.

We slightly extend APPROXMMCLUS(A,B, ℓ) in order to obtain a pre-
processing for answering queries about single entries of the arithmetic matrix
product of A and B.

procedure PREPROCMMCLUS(A,B, ℓ)
Input: Two 0-1 matrices A and B of sizes p × q and q × r, respectively, where
p ≥ r, and a positive integer ℓ not exceeding p.
Output: The p×r matrix D returned by APPROXMMCLUS(A,B, ℓ), and for
1 ≤ i ≤ p, the set of coordinate indices ind(A, i) on which Ai∗ differs from its
cluster center.

1. Run APPROXMMCLUS(A,B, ℓ).
2. For 1 ≤ i ≤ p, determine the set ind(A, i) of coordinate indices on which Ai∗

differs from cenℓ(Ai∗).

Lemma 3. PREPROCMMCLUS(A,B, ℓ) can be implemented in
O(pqℓ + pr + T (ℓ, q, r)) time.

Proof. Recall that p ≥ r. Step 1 can be done in O(pqℓ+ pr+ T (ℓ, q, r)) time by
Lemma 2. Step 2 can be easily implemented in O(pq) time. ⊓⊔

Our procedure for answering a query about a single entry of the matrix
product of A and B is as follows.

procedure QUERYMMCLUS(A,B, ℓ, i, j)
Input: The preprocessing done by PREPROCMMCLUS(A,B, ℓ) for 0-1 ma-
trices A and B of sizes p × q and q × r, respectively, where p ≥ r, ℓ ∈ [p], and
two query indices i ∈ [p] and j ∈ [r].
Output: The inner product Cij of the i-th row Ai∗ of A and the j-th column B∗j

of B.

1. Set Cij to the entry Dij of the matrix D computed by
APPROXMMCLUS(A,B, ℓ) in PREPROCMMCLUS(A,B, ℓ, k).

6

2. For m ∈ ind(A, i) do

(a) If the m-th coordinate of the center assigned to Ai∗ is 0 and Bmj = 1
then Cij ← Cij + 1.

(b) If the m-th coordinate of the center assigned to Ai∗ is 1 and Bmj is also
1 then Cij ← Cij − 1.

Lemma 4. QUERYMMCLUS(A,B, ℓ, i, j) is correct, i.e., the final value of
Cij is the inner product of the i-th row Ai∗ of A and the j-th column B∗j of B.

Proof. Cij is initially set to Dij , which is the inner product of the center assigned
to Ai∗ and B∗j . Then, Cij is appropriately corrected by increasing or decreasing
with 1 for each coordinate index m ∈ ind(A, i) which contributes 1 to the inner
product of Ai∗ and B∗j and 0 to the inner product of the center of Ai∗ and B∗j

or vice versa. ⊓⊔

Lemma 5. QUERYMMCLUS(A,B, ℓ, k, i, j) takes O(λ(A, ℓ, row)) time.

Proof. Recall that 2λ(A, ℓ, row) is an upper bound on the maximum Hamming
distance between a row of A B and its center in the ℓ-center clustering computed
by APPROXMMCLUS(A,B, ℓ) in PREPROCMMCLUS(A,B, ℓ). Recall
also that p ≥ r. Step 1 takes O(1) time. Since the m-th coordinate in the centers
can be accessed in the matrix A′ computed by APPROXMMCLUS(A,B, ℓ),
each of the two substeps in the block of the loop in Step 2 can be done in O(1)
time. Finally, since |ind(A, j)| ≤ 2λ(A, ℓ, row), the block is iterated at most
2λ(A, ℓ, row) times. Consequently, the whole Step 2 takes O(λ(A, ℓ, row)) time.

⊓⊔

By putting Lemmata 3, 4, and 5 together, and using the straightforward
O(sqt)-time algorithm to multiply matrices of size s × q and q × t, we obtain
our next main result for p ≥ r. The case p ≤ r reduces to the case p ≥ r by
(AB)⊤ = B⊤A⊤. Recall that then the number of rows in B⊤, which is r, is not
less than the number of columns in A⊤, which is p. Also, we have λ(B⊤, k, row) =
λ(B, k, col). We simply run PREPROCMMCLUS(B⊤, A⊤, k) and
QUERYMMCLUS(B⊤, A⊤, k, j, i) instead.

Theorem 2. Let A and B be two 0-1 matrices of sizes p× q and q × r, respec-
tively. Given parameters ℓ ∈ [p] and k ∈ [r], the matrices can be preprocessed by
a simple deterministic algorithm in O(pqℓ + pr) time if p ≥ r or O(rqk + pr)
time if p ≤ r such that a query asking for the exact value of a single entry Cij of
the arithmetic matrix product C of A and B can be answered in O(λ(A, ℓ, row))
time if p ≥ r or O(λ(B, k, col)) time if p ≤ r.

4 The exact arithmetic matrix product of 0-1 matrices

Theorem 2 yields the following corollary.

7

Corollary 1. Let A and B be two 0-1 matrices of sizes p × q and q × r, re-
spectively. Given parameters ℓ ∈ [p] and k ∈ [r], the arithmetic matrix product
of A and B can be computed by a simple deterministic algorithm in O(pqℓ +
prλ(A, ℓ, row)) time if p ≥ r or O(rqk + prλ(B, k, col)) time if p ≤ r.

There is however a slightly better way of obtaining a simple deterministic
algorithm for the arithmetic matrix product of two 0-1 matrices via ℓ-center
clustering of the rows of the first matrix or k-center clustering of the columns of
the second matrix. The idea is to use the aforementioned technique of traversing
an approximate minimum spanning tree of the rows of the first matrix or the
columns of the second matrix in an appropriate Hamming space in order to
compute a row or column of the product matrix [4,11,15]. The technique easily
generalizes to 0-1 rectangular matrices. We shall use the following procedure and
lemma in the spirit of [4,11,15].

procedure MMST (A,B, T)
Input: Two matrices A and B of sizes p×q and q×r, respectively, and a spanning
tree T of the rows of A in the Hamming space {0, 1}q.
Output: The arithmetic matrix product C of A and B.

1. Construct a traversal (i.e., a non-necessarily simple path visiting all vertices)
U of T.

2. For any pair Am∗, Ai∗, where the latter row follows the former in the traversal
U, compute the set diff(m, i) of indices h ∈ [q] where Aih 6= Amh.

3. For j = 1, . . . , r, iterate the following steps:
(a) Compute Csj where As∗ is the row of A from which the traversal U of

T starts.
(b) While following U , iterate the following steps:

i. Set m, i to the indices of the previously traversed row of A and the
currently traversed row of A, respectively.

ii. Set Cij to Cmj .
iii. For each h ∈ diff(m, i), if AihBhj = 1 then set Cij to Cij + 1 and

if AmhBhj = 1 then set Cij to Cij − 1.

Define the Hamming cost ham(S) of a spanning tree S of a point set P ⊂
{0, 1}d by ham(S) =

∑
(v,u)∈S ham(v, u).

Lemma 6. Let A and B be two 0-1 matrices of sizes p×q and q×r, respectively.
Given a spanning tree TA of the rows of A and a spanning tree TB of the columns
of B in the Hamming space {0, 1}q, the arithmetic matrix product of A and B
can be computed in time O(pq + qr + pr +min{r × ham(TA), p× ham(TB)}).

Proof. First, we shall prove that MMST (A,B, TA) computes the arithmetic
matrix product of A and B in time O(pq + qr + r × ham(TA)). The correctness
of the procedure MMST follows from the correctness of the updates of Cij in
the block of the inner loop, i.e., in Step 3(b). Step 1 of MMST (A,B, TA) can be
done in O(p) time while Step 2 requires O(pq) time. The first step in the block
under the outer loop, i.e., computing Csj in Step 3(a), takes O(q) time. The

8

crucial observation is that the second step in this block, i.e., Step 3(b), requires
O(p + ham(TA)) time. Simply, the substeps (i), (ii) take O(1) time while the
substep (iii) requires O(|diff(m, i)|+1) time. Since the block is iterated r times,
the whole outer loop, i.e., Step 3, requires O(qr + pr + rham(TA)) time. Thus,
MMST (A,B, TA) can be implemented in time O(pq + qr+ rp+ r× ham(TA)).

Similarly, we can run MMST (B⊤, A⊤, TB) to obtain the transpose of the
arithmetic matrix product of A and B. So, to obtain the lemma, we can alternate
the steps of MMST (A,B, TA) and MMST (B⊤, A⊤, TB), and stop whenever
any of the calls is completed. ⊓⊔

Theorem 3. Let A and B be two 0-1 matrices of sizes p × q and q × r, re-
spectively. Given parameters ℓ ∈ [p] and k ∈ [r], the arithmetic matrix prod-
uct of A and B can be computed by a simple deterministic algorithm in time
O(pqℓ + rqk +min{prλ(A, ℓ, row) + rqℓ, prλ(B, k, col) + pqk}).

Proof. We determine an ℓ-center clustering of the rows of A in {0, 1}q of max-
imum cluster radius not exceeding 2λ(A, ℓ, row) in O(pqℓ) time by employing
Fact 1. Similarly, we construct a k-center clustering of the columns of B in {0, 1}q
of maximum cluster radius not exceeding 2λ(B, k, col) in O(rqk) time. The cen-
ters in both aforementioned clusterings are some rows of A and some columns
of B, respectively, by the specification of the method in [16]. Hence, the ℓ-center
clustering gives rise to a spanning tree TA of the rows of A with all members of a
cluster being pendants of their cluster center and the centers connected by a path
of length ℓ−1. The Hamming cost of TA is at most (p−ℓ)2λ(A, ℓ, row)+(ℓ−1)q.
Similarly, we obtain a spanning tree TB of the columns of B having the Ham-
ming cost not exceeding (r−k)2λ(B, k, col)+(k−1)q. The theorem follows from
Lemma 6 by straightforward calculations. ⊓⊔

5 Extensions

The rows or columns in the input 0-1 matrices can be very long. Also, a large
number of clusters might be needed in order to obtain a low upper bound on
their radius. Among other things, for these reasons, we have picked Gonzalez’s
classical algorithm for the k-center clustering problem [16] as a basic tool in our
approach to the arithmetic matrix product of two 0-1 matrices with clustered
rows or columns. The running time of his algorithm is linear not only in the
number of input points but also in their dimension, and in the parameter k.
Importantly, it is very simple and provides a solution within 2 of the optimum.
For instance, there exist faster (in terms of n and k) 2-approximation algorithms
for k-center clustering with hidden exponential dependence on the dimension in
their running time, see [10,17],

One could easily generalize our main results by replacing Gonzalez’s algo-
rithm with a simple and efficient approximation algorithm for the more general
problem of k-center clustering with outliers [6]. In the latter problem, a given
number z of input points could be discarded as outliers when trying to minimize
the maximum cluster radius. Unfortunately, the algorithms for this more general

9

problem tend to be more complicated and the focus seems to be the approxima-
tion ratio achievable in polynomial time (e.g., 3 in [6] and 2 in [18]) not the time
complexity.

There are many other variants of clustering than k-center clustering, and
plenty of methods have been developed for them in the literature. In fact, in
the design of efficient algorithms for the exact arithmetic matrix product of 0-1
matrices with clustered rows or columns, using the k-median clustering could
seem more natural. The objective in the latter problem is to minimize the sum
of distances between the input points and their nearest centers. Unfortunately,
no simple deterministic O(1)-approximation algorithms for the latter problem
that are efficient in case the dimension and k parameters are large seem be to
available [5,7].

Our approximate and exact algorithms for the matrix product of 0-1 matrices
as well as the preprocessing of the matrices can be categorized as supervised
since they assume that the user has some knowledge on the input matrices and
can choose reasonable values of the parameters ℓ and k guaranteeing relatively
low overall time complexity. Otherwise, one could try the ℓ-center and k-center
clustering subroutines for a number of combinations of different values of ℓ and k
in order to pick the combination yielding the lowest upper bound on the overall
time complexity of the algorithm or preprocessing.

Acknowledgments

J.J. was partially supported by KAKENHI grant 24K22294.

References

1. J. Alman, R. Duan, V. Vassilevska Williams, Y. Xu, Z. Xu, and R. Zhou. More
asymmetry yields faster matrix multiplication. In Proceedings of the Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2025), pages 2005–2039. ACM-
SIAM, 2025.

2. J. Alves, S. Moustafa, S. Benkner, and A. Francisco. Accelerating graph neural net-
works with a novel matrix compression format. DOI:10.48550/arXiv.2409.02208,
2024.

3. E. Anand, J. van den Brand, and R. McCarthy. The structural complexity of
matrix-vector multiplication. arXiv:2502.21240, 2025.

4. A. Björklund and A. Lingas. Fast Boolean matrix multiplication for highly clus-
tered data. In Proceedings of the Algorithms and Data Structures Symposium
(WADS 2001), pages 258–263. Springer, 2001.

5. M. Charikar, S. Guha, E. Tardos, and D. Shmoys. A constant-factor approximation
algorithm for the k-median problem. In Proceedings of the 31st Annual ACM
Symposium on Theory of Computing (STOC 1999), page 1–10. ACM, 1999.

6. M. Charikar, S. Khuller, D. Mount, and G. Narasimhan. Algorithms for facility lo-
cation problems with outliers. In Proceedings of the 12th Annual ACM-SIAM Sym-
posium on Discrete Algorithms (SODA 2001), page 642–651. ACM-SIAM, 2001.

7. K. Chen. On coresets for k-median and k-means clustering in metric and euclidean
spaces and their applications. SIAM Journal on Computing, 39:923–947, 2009.

10

8. E. Cohen and D. D. Lewis. Approximating matrix multiplication for pattern recog-
nition tasks. Journal of Algorithms, 30 (2):211–252, 1999.

9. P. Drineas, R. Kannan, and M. Mahoney. Fast Monte Carlo algorithms for matrices
I: Approximating matrix multiplication. SIAM Journal on Computing, 36 (1):132–
157, 2006.

10. T. Feder and D. Greene. Optimal algorithms for approximate clustering. In Pro-
ceedings of ACM Symposium on Theory of Computing (STOC 1988), pages 434–
444. ACM, 1988.

11. P. Floderus, J. Jansson, C. Levcopoulos, A. Lingas, and D. Sledneu. 3D rect-
angulations and geometric matrix multiplication. Algorithmica, 80 (1):136–154,
2018.

12. P. Floderus, M. Kowaluk, A. Lingas, and E. Lundell. Detecting and counting small
pattern graphs. SIAM Journal on Discrete Mathematics, 29 (3):1322–1339, 2015.

13. L. Gąsieniec, J. Jansson, and A. Lingas. Approximation algorithms for Hamming
clustering problems. Journal of Discrete Algorithms, 2 (2):289–301, 2004.

14. L. Gąsieniec, M. Kowaluk, and A. Lingas. Faster multi-witnesses for Boolean
matrix multiplication. Information Processing Letters, 109 (4):242–247, 2009.

15. L. Gąsieniec and A. Lingas. An improved bound on Boolean matrix multiplication
for highly clustered data. In Proceedings of the Algorithms and Data Structures
Symposium (WADS 2003), pages 329–339. Springer, 2003.

16. T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret-
ical Computer Scirnce, 38:293–306, 1985.

17. S. Har-Peled and M. Mendel. Fast construction of nets in low-dimensional metrics
and their applications. SIAM Journal on Computing, 35(5):1148–1184, 2006.

18. D. Harris, T. Pensyl, A. Srinivasan, and K. Trinh. A lottery model for center-
type problems with outliers. In Proceedings of the International Workshop on
Approximation Algorithms for Combinatorial Optimization Problems (APPROX
2017), pages 10:1–10:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

19. M. Iven and C. Spencer. A note on compressed sensing and the complexity of
matrix multiplication. Information Processing Letters, 109(10):468–471, 2009.

20. K. Kurzkov. Deterministic algorithms for skewed matrix products. In Proceed-
ings of the International Symposium on Theoretical Aspects of Computer Science
(STACS 2013), pages 466–477. Schloss Dagstuhl- Leibniz-Zentrum fuer Informatik,
vol. 20, 2013.

21. R. Pagh. Compressed matrix multiplication. ACM Transactions on Computation
Theory (TOCT), 5(3):1–17, 2013.

22. T. Sarlós. Improved approximation algorithms for large matrices via random pro-
jections. In Proceedings of the IEEE Symposium on Foundations of Computer
Science (FOCS 2006), pages 143–152. IEEE Computer Society, 2006.

23. V. Vassilevska Williams, Y. Xu, Z. Xu, and R. Zhou. New bounds for matrix
multiplication: from alpha to omega. In Proceedings of the Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2024). ACM-SIAM, 2024.

24. R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Transactions on
Algorithms, 1:2–13, 2005.

11

	Multiplication of 0-1 matrices via clustering

