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We introduce the concept of cyclic covers, which generalizes the classical notion of covers in strings. Given any 
string 𝑋, a factor 𝑊 of 𝑋 is called a cyclic cover if each position of 𝑋 belongs to an occurrence of a cyclic shift of 
𝑊 in 𝑋. Two cyclic covers are distinct if one is not a cyclic shift of the other. The cyclic covers problem asks for 
all distinct cyclic covers of an input string 𝑋. We present an algorithm that solves the cyclic covers problem in 
(𝑛 log𝑛) time, where 𝑛 is the length of 𝑋. It is based on finding a well-structured set of standard occurrences of 
a constant number of factors of a cyclic cover candidate 𝑊 , computing the regions of 𝑋 covered by cyclic shifts 
of 𝑊 , extending those factors, and taking the union of the results.

1. Introduction

Repetitions and periodicities in strings have been extensively stud-
ied across many fields including string combinatorics, pattern matching 
and automata theory [29,30] due to their theoretical significance and 
real-world applications. Detection algorithms and data structures for re-
peated patterns and regularities span across several fields of computer 
science [14,21], such as computational biology, pattern matching, data 
compression, and randomness testing.

String covers, a generalization of periodicity, stem from quasiperi-
odicity [5] and allow occurrences of a repeated factor in a string to 
overlap. A factor 𝑊 of a string 𝑋 is called a cover of 𝑋 if each posi-
tion of 𝑋 belongs to an occurrence of 𝑊 . See Fig. 1 for an example. 
By definition, a cover of 𝑋 must also be a border of 𝑋, i.e., it must ap-
pear as both a prefix and a suffix of 𝑋. Apostolico et al. [6] presented 
the first linear-time algorithm for finding the shortest cover of a string. 
Subsequently, Breslauer [9] developed a linear-time on-line algorithm 
for the problem. Moore and Smyth [34] gave a linear-time algorithm 
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COM 2023), Lecture Notes in Computer Science, Vol. 13973, pp. 139–150, Springer, 2023.
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that computes all the covers of a string; this result was later extended 
to a linear-time on-line algorithm by Li and Smyth [28]. Related string 
factorization problems include antiperiods [2] and anticovers [1], in 
addition to approximate [3] and partial [26] covers and seeds [25]. 
Other combinatorial covering problems consider applications to graphs 
[12,35].

Cyclic strings have been studied throughout various computer sci-
ence and mathematical fields, in particular in the field of combinatorics. 
A cyclic string is a string that does not have an initial or terminal po-
sition; instead, the two ends of the string are joined together, and the 
string can be viewed as a necklace of letters. A cyclic string of length 𝑛
can be also viewed as a traditional linear string, which has the left- and 
right-most letters wrapped around and stuck together. Under this no-
tion, the same cyclic string can be seen as 𝑛 linear strings, which would 
all be considered equivalent.

One of the earliest studies of cyclic strings occurs in Booth’s linear-
time algorithm [8] for computing the lexicographically smallest cyclic 
factor of a string. Other closely related works reference terms such as 
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Fig. 1. The string 𝚊𝚋𝚊 is a cover of the string 𝚊𝚋𝚊𝚊𝚋𝚊𝚋𝚊𝚋𝚊. 
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Fig. 2. The string 𝑋 = 𝚊𝚊𝚋𝚋𝚊𝚊𝚋𝚊𝚊𝚋𝚊𝚊𝚋𝚊𝚊𝚋 has a cyclic cover of length 3 (shown 
at the top) since 𝑋[0 . .2], 𝑋[3 . .5], 𝑋[4 . .6], 𝑋[5 . .7], 𝑋[6 . .8], 𝑋[7 . .9], 
𝑋[8 . .10], 𝑋[9 . .11], 𝑋[10 . .12], 𝑋[11 . .13], 𝑋[12 . .14], 𝑋[13 . .15] are all 
cyclic shifts of the same factor 𝚊𝚊𝚋, and cover all positions of 𝑋. In addition, 𝑋
has a cyclic cover of length 4 (shown at the bottom) as well as cyclic covers of 
lengths 7, 10, 13, and 16 (not shown).

‘Lyndon factorization’ and ‘canonization’ [4,11,17,19,31,32,37]. Some 
recent advances on cyclic strings can be found in [13]. Aside from com-
binatorics, cyclic strings have applications within bioinformatics [38, 
39] or image processing [7,36].

This article introduces the concept of a cyclic cover of a string, which 
generalizes the notion of a cover by incorporating cyclic shifts. A factor 
𝑊 of 𝑋 is called a cyclic cover if each position of 𝑋 belongs to an 
occurrence of a cyclic shift of 𝑊 in 𝑋. Our motivation for cyclic covers 
originates from viral genomes, such as Escherichia coli (E. coli), which 
can form circular sequences [40,38]. The study of cyclic covers in this 
context generalizes traditional sequence alignment of viral genomes, a 
crucial tool in bioinformatics for analyzing evolutionary relationships 
[16].

Fig. 2 shows an example in which 𝑋 has several different cyclic cov-
ers. In the figure, the cyclic occurrences of a cyclic cover of length 3 as 
well as the cyclic occurrences of one of length 4 are illustrated.

We can immediately note the following:

Lemma 1. If 𝑊 is a cyclic cover of length 𝓁 of a string 𝑋 then 𝑊 and the 
prefix of 𝑋 of length 𝓁 are cyclic shifts of each other.

Proof. By the definition of a cyclic cover, the first position of 𝑋 belongs 
to an occurrence of a cyclic shift of 𝑊 . Since 𝑊 has length 𝓁, the first 
𝓁 positions of 𝑋 form a cyclic shift of 𝑊 . □

Two cyclic covers are called distinct if they are not cyclic shifts of 
one another. By Lemma 1, any two factors 𝑊 and 𝑍 of 𝑋 of equal 
length that both are cyclic covers of 𝑋 have to be cyclic shifts of the 
same prefix of 𝑋, and hence by transitivity, cyclic shifts of each other. 
For this reason, two cyclic covers of 𝑋 are distinct if and only if they 
have different lengths.

Moreover, Lemma 1 implies that whenever a prefix 𝑃 of 𝑋 is a cyclic 
cover, all the cyclic covers of 𝑋 of that length are cyclic shifts of 𝑃 . In 
other words, for any positive integer 𝓁, all the length-𝓁 cyclic covers 
of 𝑋 can be represented by the prefix of 𝑋 of length 𝓁. To obtain the 
distinct cyclic covers of 𝑋, it is therefore sufficient to compute all 𝓁 for 
which the length-𝓁 prefix of 𝑋 is a cyclic cover of 𝑋.

a a ⋯ a b a a ⋯ a
0 1 𝑘 − 1 𝑘 𝑘 + 1 𝑘 + 2 2𝑘

Fig. 3. Let 𝑋 = 𝚊𝑘𝚋𝚊𝑘 for some integer 𝑘 ≥ 1. Every factor of 𝑋 of the form 
𝚊𝑖𝚋𝚊𝑗 , where 𝑖, 𝑗 ≥ 0 are integers such that 𝑖 + 𝑗 ≥ 𝑘, is a cyclic cover of 𝑋. 
These Θ(𝑘2) cyclic covers are represented by the Θ(𝑘) prefixes of 𝑋 of length 
𝑘+ 1, 𝑘+ 2, … , 2𝑘+ 1. Indicated in the figure is the cyclic cover given by the 
prefix of length 𝑘+ 2.

1.1. Our contributions

We study the cyclic covers problem, which asks for all of the distinct 
cyclic covers of a string: Given an input string 𝑋, output the lengths 
of all prefixes of 𝑋 that are cyclic covers of 𝑋. As an example, for the 
input shown in Fig. 2, the output of the cyclic covers problem should be 
3,4,7,10,13,16.

The main result in the article is an algorithm that solves the cyclic 
covers problem in (𝑛 log𝑛) time for any string of length 𝑛. We assume 
that the input string is over a general ordered alphabet and that the 
model of computation is the word RAM model with word size Θ(log𝑛); 
both restrictions follow from the restrictions of cited and used data struc-
tures.

The rest of the article is organized as follows. Section 2 provides 
the formal definitions, reviews some results from the literature, and de-
scribes a straightforward quadratic-time algorithm for the cyclic covers 
problem. Section 3 presents our faster algorithm. Finally, we give some 
concluding remarks in Section 4.

2. Preliminaries

2.1. Basic definitions

A string 𝑋 of length 𝑛 = |𝑋| is a sequence of 𝑛 characters over an 
integer alphabet Σ = {0,… , 𝑛(1)}. For every 𝑖 ∈ {0,1,… , 𝑛 − 1}, the 
character at position 𝑖 of the string is denoted by 𝑋[𝑖]. A positive integer 
𝑝 < 𝑛 is called a period of 𝑋 if 𝑋[𝑖] =𝑋[𝑖+ 𝑝] for all 𝑖 = 0,… , 𝑛− 𝑝− 1. 
By 𝑋[𝑖 . . 𝑗], we denote a factor of 𝑋 equal to 𝑋[𝑖]⋯𝑋[𝑗], whereby if 
𝑖 > 𝑗, then it is the empty string. The factor 𝑋[𝑖 . . 𝑗] is a prefix of 𝑋 if 
𝑖 = 0, and a suffix of 𝑋 if 𝑗 = 𝑛−1. If 𝑋[0 . . 𝑏−1] =𝑋[𝑛− 𝑏 . . 𝑛−1], the 
factor 𝑋[0 . . 𝑏 − 1] is called a border of 𝑋. A factor 𝑊 is periodic if its 
smallest period is at most |𝑊 |∕2, and 𝑊 is highly-periodic if its smallest 
period is at most |𝑊 |∕4. An important property used throughout the 
article is Fine and Wilf’s periodicity lemma:

Lemma 2 ([18]). If 𝑝, 𝑞 are periods of a string 𝑋 of length |𝑋| ≥ 𝑝 + 𝑞 −
𝑔𝑐𝑑(𝑝, 𝑞), then 𝑔𝑐𝑑(𝑝, 𝑞) is also a period of 𝑋.

Next, a factor 𝑈 is a cyclic shift of a factor 𝑊 if 𝑊 =𝐴𝐵 and 𝑈 = 𝐵𝐴

for some strings 𝐴 and 𝐵. When this condition holds, we say that 𝑈 is a 
𝑑-cyclic shift of 𝑊 , where 𝑑 = |𝐴|. A factor 𝑊 is called a cyclic cover of 𝑋
if, for every position 𝑖 (0 ≤ 𝑖 < 𝑛), there exists a factor 𝑋[𝑗 . . 𝑗+ |𝑊 |−1]
that is a cyclic shift of 𝑊 and contains position 𝑖, i.e., 0 ≤ 𝑗 ≤ 𝑖 ≤ 𝑗 +|𝑊 | − 1 < 𝑛. (For some examples, refer to Figs. 2 and 3.) Two cyclic 
covers are distinct if they are not cyclic shifts of one another. As observed 
in the introduction, the distinct cyclic covers of 𝑋 can be represented 
by the lengths of their corresponding prefixes of 𝑋. Consequently, the 
cyclic covers problem is to output the lengths of all prefixes of an input 
string 𝑋 that are cyclic covers of 𝑋.

Remark. Even though any string of length 𝑛 has at most 𝑛 distinct cyclic 
covers, it could have Θ(𝑛2) distinct factors that are cyclic covers, as 
demonstrated in Fig. 3. Thus, the number of distinct factors that are 
cyclic covers can be much larger than the number of distinct cyclic cov-
ers.
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We denote by 𝑙𝑐𝑝(𝑋[𝑖 . . 𝑗],𝑋[𝑘 . . 𝑙]) the length of the longest com-
mon prefix of the factors 𝑋[𝑖 . . 𝑗] and 𝑋[𝑘 . . 𝑙]. Also, we denote by 
𝑙𝑐𝑝𝑟(𝑋[𝑖 . . 𝑗],𝑋[𝑘 . . 𝑙]) the length of the longest common suffix of 
𝑋[𝑖 . . 𝑗] and 𝑋[𝑘 . . 𝑙]. After (𝑛) time preprocessing of 𝑋, 𝑙𝑐𝑝 and 𝑙𝑐𝑝𝑟
for any two specified factors of 𝑋 can be computed in (1) time [23].

2.2. The IPM data structure

A useful data structure called the Internal Pattern Matching (IPM) data 
structure was introduced in [27]. It efficiently determines if a substring 
𝑥 occurs within another substring 𝑦 of a given text in constant time, 
provided that |𝑦| =𝑂(|𝑥|).

The following three lemmas summarize some of its properties. Let us 
denote by 𝑜𝑐𝑐(𝑊 ,𝑍) the (possibly empty) list of positions 𝑗 such that 
𝑊 =𝑍[𝑗 . . 𝑗 + |𝑊 |− 1].

Lemma 3 ([24,27]). Given a string 𝑋 of length 𝑛, the IPM data structure 
for 𝑋 after (𝑛) time and space construction computes 𝑜𝑐𝑐(𝐴,𝐵) for any 
factors 𝐴 and 𝐵 of 𝑋 where |𝐴| ≤ |𝐵| ≤ 2|𝐴|, in (1) time. Furthermore, 
the list of positions is presented as an arithmetic progression.

Lemma 4 ([24,27]). Given a string 𝑋 of length 𝑛, the IPM data structure 
for 𝑋 after (𝑛) time and space construction determines if 𝐴 is a cyclic shift 
of 𝐵 in (1) time, for any two factors 𝐴 and 𝐵 of 𝑋.

Lemma 5 ([27]). Given a string 𝑋 of length 𝑛, the 2-Period data structure 
of 𝑋 after (𝑛) time and space construction determines if 𝐴 is periodic, and 
if that is the case, computes its shortest period in (1) time for any factor 𝐴
of 𝑋.

In [27], the data structures of Lemmas 3 and 4 were constructed 
in (𝑛) expected time. These constructions were strengthened to (𝑛)
worst-case time in [24]. It was already shown in [27] how to construct 
the data structure of Lemma 5 in (𝑛) worst-case time.

2.3. A quadratic-time algorithm for the cyclic covers problem

A straightforward approach based on repeated applications of 
Lemma 4 leads to a quadratic-time algorithm for the cyclic covers prob-
lem.

More precisely, first construct the IPM data structure for 𝑋 in a pre-
processing step. Next, for each 𝓁 ∈ {1,2,… , 𝑛−1} independently of each 
other, check if the length-𝓁 prefix of 𝑋 is a cyclic cover of 𝑋 as follows: 
Initialize a variable covered to −1 that says which positions of 𝑋 have 
been covered so far. Then, for each 𝑖 from 0 to 𝑛−𝓁, apply Lemma 4 to 
test whether 𝑋[𝑖 . . 𝑖 + 𝓁 − 1] is a cyclic shift of 𝑋[0 . .𝓁 − 1]; if the an-
swer is yes then update covered to 𝑖+ 𝓁 − 1, but if the answer is no and 
covered < 𝑖 then go on to the next 𝓁 since there is a position of 𝑋 that 
cannot be covered by a cyclic shift of the current 𝑋[0 . .𝓁−1]. If covered
reaches 𝑛 − 1 then include the current value of 𝓁 in the output and go 
to the next 𝓁.

The correctness of the method can be seen as follows. For any fixed 
𝓁, if the output contains 𝓁 then every position of 𝑋 belongs to at least 
one occurrence of a cyclic shift of 𝑋[0 . .𝓁 − 1], and so 𝑋[0 . .𝓁 − 1] is 
a cyclic cover of 𝑋 by definition. On the other hand, if the output does 
not contain 𝓁 then there is some position 𝑖 in 𝑋 for which covered could 
never reach the value 𝑖; the only way that this can happen is if none of 
𝑋[𝑖−𝓁 +1 . . 𝑖], 𝑋[𝑖−𝓁 +2 . . 𝑖+1], … , 𝑋[𝑖 . . 𝑖+𝓁 −1] are cyclic shifts 
of 𝑋[0 . .𝓁 −1], which means that 𝑋[0 . .𝓁 −1] cannot be a cyclic cover 
of 𝑋. Furthermore, in this case, Lemma 1 guarantees that 𝑋 does not 
have any cyclic cover of length 𝓁.

According to Lemma 4, the preprocessing takes (𝑛) time and ver-
ifying each 𝓁 ∈ {1,… , 𝑛 − 1} in the main for-loop takes (𝑛 − 𝓁 + 1)
time. Thus, the total time complexity of the straightforward algorithm 
is (𝑛2). The next section will present a faster solution.
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Fig. 4. Given 𝑋 = 𝚋𝚊𝚋𝚋𝚋𝚊𝚋𝚊𝚋𝚋, 𝑊 = 𝚋𝚋𝚊𝚋, and the constraint that 𝑊 [1] aligns 
to 𝑋[4], the region 𝑋[1 . .6] is cyclically covered by 𝑊 . The lengths 𝓁1 and 𝓁2
denote 𝑙𝑐𝑝(𝑊 [1 . .3]𝑊 [0],𝑋[4 . .9]) and 𝑙𝑐𝑝𝑟(𝑊 [2 . .3]𝑊 [0 . .1],𝑋[0 . .4]) − 1, 
respectively.

3. A faster algorithm for cyclic covers

In order to improve the quadratic-time algorithm, we consider two 
cases: (𝑖) if 𝑊 is a highly periodic factor and (𝑖𝑖) if 𝑊 is not a highly 
periodic factor. This is because the number of occurrences of a highly 
periodic factor 𝑊 in a string 𝑋 is much higher due to the repetitive 
nature permitting an overlap between each period of 𝑊 ; this is not the 
case if 𝑊 is non-highly periodic.

Below, we outline an improved approach for the cyclic covers prob-
lem.

1. Section 3.1 presents a function named 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗)
which returns a region in 𝑋 (if any) that is cyclically covered by 
𝑊 under the constraint that 𝑊 [𝑖] aligns to 𝑋[𝑗].

2. Using the function 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗), Section 3.2 devel-
ops an (𝑛∕𝓁)-time algorithm for finding regions in 𝑋 covered by 
𝑊 when 𝑊 is highly-periodic.

3. Again using 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗), Section 3.3 develops an 
(𝑛∕𝓁)-time algorithm for finding regions in 𝑋 covered by 𝑊 when 
𝑊 is not highly-periodic.

4. Finally, in Section 3.4, we present how to identify all cyclic covers 
in (𝑛 log𝑛) time.

3.1. The function 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗)

Let 𝑋[0 . . 𝑛 − 1] be a string, 𝑊 [0 . .𝓁 − 1] a factor of 𝑋, and 𝑖 and 
𝑗 nonnegative integers. For any 𝑗′ ∈ [𝑗 − 𝓁 + 1 . . 𝑗], a length-𝓁 factor 
𝑋[𝑗′ . . 𝑗′ + 𝓁 − 1] of 𝑋 is called a cyclic shift of 𝑊 [0 . .𝓁 − 1] with 𝑊 [𝑖]
aligned to 𝑋[𝑗] if the 𝑖-cyclic shift of 𝑊 equals the (𝑗 − 𝑗′)-cyclic shift 
of 𝑋[𝑗′ . . 𝑗′ + 𝓁 − 1]. For example, given the string 𝑋 = 𝚋𝚊𝚋𝚋𝚋𝚊𝚋𝚊𝚋𝚋, 
the factor 𝑊 = 𝚋𝚋𝚊𝚋, and the constraint that 𝑊 [1] aligns to 𝑋[4], the 
region 𝑋[1 . .6] is cyclically covered by 𝑊 . See Fig. 4.

The lemma below explains how to identify a region 𝑋[𝛼 . . 𝛽] in 𝑋
that is cyclically covered by 𝑊 under the constraint that 𝑊 [𝑖] aligns to 
𝑋[𝑗], or determine that none exists.

Lemma 6. Consider a string 𝑋[0 . . 𝑛−1] and a length-𝓁 factor 𝑊 [0 . .𝓁 −
1] of 𝑋. Let 𝓁1 = 𝑙𝑐𝑝(𝑊 [𝑖 . .𝓁 − 1]𝑊 [0 . . 𝑖 − 1],𝑋[𝑗 . . 𝑛 − 1]) and 𝓁2 =
𝑙𝑐𝑝𝑟(𝑊 [𝑖+ 1 . .𝓁 − 1] 𝑊 [0 . . 𝑖],𝑋[0 . . 𝑗]) − 1. If 𝓁1 + 𝓁2 ≥ 𝓁 then 𝑋[𝑗 −
𝓁2 . . 𝑗 + 𝓁1 − 1] is cyclically covered by 𝑊 under the constraint that 𝑊 [𝑖]
aligns to 𝑋[𝑗]; otherwise, such a cyclic cover does not exist.

Proof. Let 𝑈 =𝑊 [𝑖 . .𝓁−1]𝑊 [0 . . 𝑖−1] and define 𝑈2 =𝑈𝑈 . From the 
definitions of 𝓁1 and 𝓁2, we have 𝑋[𝑗−𝓁2 . . 𝑗+𝓁1−1] =𝑈2[𝓁−𝓁2 . .𝓁+
𝓁1 − 1]. Every factor of length 𝓁 (if any) of this string is a cyclic shift of 
𝑈 , and hence also of 𝑊 . Thus, if 𝓁1 +𝓁2 ≥ 𝓁 then 𝑋[𝑗 −𝓁2 . . 𝑗 +𝓁1 −1]
is cyclically covered by 𝑊 under the constraint that 𝑈 [0] aligns to 𝑋[𝑗]
(i.e., 𝑊 [𝑖] aligns to 𝑋[𝑗]).

In contrast, if 𝓁1 + 𝓁2 < 𝓁 then the length of 𝑋[𝑗 − 𝓁2 . . 𝑗 + 𝓁1 − 1]
is (𝑗 + 𝓁1 − 1) − (𝑗 − 𝓁2) + 1 = 𝓁1 + 𝓁2 < 𝓁. Then |𝑈 | = 𝓁 implies that if 
𝑋 contains a cyclic shift of 𝑈 with 𝑈 [0] aligned to 𝑋[𝑗] then at least 
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one of 𝑋[𝑗 − 𝓁2 − 1] and 𝑋[𝑗 + 𝓁1] must belong to it. However, this is 
impossible because 𝑈 [𝓁−𝓁2 −1] ≠𝑋[𝑗−𝓁2 −1] and 𝑈 [𝓁1] ≠𝑋[𝑗+𝓁1]
by the definitions of 𝓁1 and 𝓁2. Therefore, 𝑋 cannot contain a cyclic 
shift of 𝑊 under the constraint that 𝑊 [𝑖] aligns to 𝑋[𝑗]. □

Based on Lemma 6, we define a function 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗)
which returns a pair of indices (𝛼, 𝛽) with 𝛼 ≤ 𝑗 ≤ 𝛽 such that 𝑋[𝛼 . . 𝛽] is 
cyclically covered by 𝑊 under the constraint that 𝑊 [𝑖] aligns to 𝑋[𝑗]. 
If no such cyclic cover exists, the function returns an empty region.

Lemma 7. After (𝑛) time preprocessing, 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 𝑖, 𝑗) for 
any factor 𝑊 of 𝑋 and any nonnegative integers 𝑖 and 𝑗 can be computed 
in (1) time.

Proof. In the preprocessing step, build the 𝑙𝑐𝑝 and 𝑙𝑐𝑝𝑟 data structures 
[23] for 𝑋 in (𝑛) time. Then, for any call to 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋, 
𝑖, 𝑗), use them to compute 𝓁1 and 𝓁2 defined in Lemma 6 in (1) time, 
and check if 𝓁1 + 𝓁2 ≥ 𝓁. In accordance with Lemma 6, if the answer is 
yes then return (𝑗 − 𝓁2, 𝑗 + 𝓁1 − 1); if the answer is no then return ∅.

Since 𝑊 [𝑖 . .𝓁−1]𝑊 [0 . . 𝑖−1] may occur as a factor in 𝑋, we cannot 
always compute 𝓁1 with a single query to the 𝑙𝑐𝑝 data structure for 
𝑋. Instead, we compute 𝓁1 using at most two 𝑙𝑐𝑝 queries as follows. If 
𝑙𝑐𝑝(𝑊 [𝑖 . .𝓁−1],𝑋[𝑗 . . 𝑛−1]) < 𝓁− 𝑖 then it represents the sought value 
of 𝓁1 and we are done. Otherwise, 𝑙𝑐𝑝(𝑊 [𝑖 . .𝓁−1],𝑋[𝑗 . . 𝑛−1]) = 𝓁− 𝑖

indicates a potential longer match involving the cyclic shift 𝑊 [0 . . 𝑖−1]. 
To determine the full extent of this match, we perform a second 𝑙𝑐𝑝
query between 𝑊 [0 . . 𝑖−1] and 𝑋[𝑗 +𝓁− 𝑖 . . 𝑛−1]. Thus the combined 
length of the match, 𝓁1 = (𝓁− 𝑖)+ 𝑙𝑐𝑝(𝑊 [0 . . 𝑖−1],𝑋[𝑗 +𝓁− 𝑖 . . 𝑛−1]). 
Note that 𝓁1 ≤ 𝓁, where 𝓁1 = 𝓁 corresponds to a complete occurrence of 
the cyclic shift 𝑊 [𝑖 . .𝓁 − 1]𝑊 [0 . . 𝑖− 1] aligning with 𝑋[𝑗 . . 𝑗 + 𝓁 − 1]. 
The value of 𝓁2 is computed analogously. □

3.2. Finding regions in 𝑋 that are cyclically covered by a highly-periodic 
factor 𝑊

Lemma 9 below describes how to find regions that are cyclically cov-
ered by 𝑊 [0 . .𝓁 − 1] if 𝑊 is of period 𝑞 where 𝑞 ≤ 𝓁∕4. To prove it, 
we make use of a lemma by Miyazaki et al. from [33] (see also [10,20]) 
to represent occurrences in a convenient way. Let (𝑗1, 𝑞,𝑚) denote the 
arithmetic progression 𝑗1, 𝑗2,… , 𝑗𝑚 with 𝑗𝑠+1 = 𝑗𝑠 + 𝑞, where 1 ≤ 𝑠 < 𝑚.

Lemma 8 ([33], Lemma 3.1). Suppose the minimum period of 𝑊 [0 . .𝓁−1]
is 𝑞. For a length-2𝓁 factor 𝑌 , 𝑜𝑐𝑐(𝑊 ,𝑌 ) equals a single arithmetic progres-

sion (𝑗1, 𝑞′,𝑚′). If 𝑚′ ≥ 3, then 𝑞′ = 𝑞.

Lemma 9. Suppose the smallest period of 𝑊 [0 . .𝓁−1] is 𝑞 ≤ 𝓁∕4. We can 
find which parts of 𝑋[𝑖 . . 𝑖 + 𝓁 − 1] are cyclically covered by 𝑊 in (1)
time.

Proof. Any cyclic shift of 𝑊 that covers any position of 𝑋[𝑖 . . 𝑖+𝓁−1]
must be fully contained inside 𝑋[𝑖−𝓁 . . 𝑖+2𝓁 −1], hence we are going 
to restrict our search to that region.

Let 𝑌 =𝑊 [0 . . ⌊𝓁∕2𝑞⌋𝑞 − 1], which is 𝑊 [0 . . 𝑞 − 1]⌊𝓁∕2𝑞⌋. Note that 
𝓁∕3 < |𝑌 | ≤ 𝓁∕2, and also |𝑌 | ≥ 2𝑞, hence 𝑞 is its smallest period (a 
smaller period would imply a smaller period of 𝑋 by Lemma 2). To 
see why 𝓁∕3 < |𝑌 |, observe that 𝓁 = 2𝑞𝑘 + 𝑖, where 𝑘 ∈ ℤ+, 𝑘 ≥ 2 and 
𝑖 ∈ [0,2𝑞−1]. Here, we consider the edge case when 𝑖 = 2𝑞−1. It follows 
that

|𝑌 | = ⌊
2𝑞𝑘+ 2𝑞 − 1

2𝑞 

⌋
𝑞

= 2𝑞𝑘
2𝑞 

𝑞 = 𝑘𝑞

>
1
3
(2𝑞𝑘+ 2𝑞 − 1) (when 𝑘 ≥ 2)

Fig. 5. If 𝛼𝑠+1 < 𝛼𝑠 ≤ 𝑗𝑠 for 𝑠 ≥ 1, then 𝑋[𝑗𝑠 . . 𝑗𝑠+1] is a prefix of 𝑊 occurring at 
𝑗𝑠, and is a suffix of 𝐿𝐶𝑃 𝑟(𝑊 ,𝑋[0 . . 𝑗𝑠+1]) − 1.

= 𝓁
3 

as required.
Any cyclic shift of 𝑊 must contain 𝑌 as a factor.
We first find the occurrences of 𝑌 in 𝑋[𝑖 − 𝓁 . . 𝑖 + 2𝓁 − 1]. By 

Lemma 3, these occurrences can be found in (1) time by computing 
𝑜𝑐𝑐(𝑌 ,𝑋[𝑖′ . . 𝑖′ + 2|𝑌 |]) for 𝑖′ ∈ {𝑖−𝓁+ℎ|𝑌 | ∣ ℎ = 0,1,2,… ,⌊3𝓁∕|𝑌 |⌋}. 
Since 3𝓁∕|𝑌 | < 9 we have at most 9 arithmetic progressions with period 
𝑞 (by Lemma 8) plus up to 18 standalone occurrences (i.e., occurrences 
which are not part of an arithmetic progression).

For each standalone occurrence starting at position 𝑗 we can simply 
run 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,0, 𝑗) separately. Processing of the arith-
metic progressions is a little more complex, however. To see how to 
do it efficiently, we first prove a crucial claim.

For an arithmetic progression (𝑗1, 𝑞,𝑚) and 1≤ 𝑠 ≤𝑚, let 𝑋[𝛼𝑠 . . 𝛽𝑠] =
𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,0, 𝑗𝑠). We claim that the following inequal-
ities hold: 𝛽𝑠 ≤ 𝛽𝑠+1 and 𝛼𝑠 ≤ 𝛼𝑠+1. The former inequality 𝛽𝑠 = 𝑗𝑠 +
𝑙𝑐𝑝(𝑊 ,𝑋[𝑗𝑠 . . 𝑛− 1]) − 1 ≤ 𝑗𝑠 + 𝑙𝑐𝑝(𝑊 [0 . . 𝑞 − 1]𝑊 ,𝑋[𝑗𝑠 . . 𝑛− 1]) − 1 =
𝑗𝑠 + 𝑞 + 𝑙𝑐𝑝(𝑊 ,𝑋[𝑗𝑠+1 . . 𝑛 − 1]) − 1 = 𝛽𝑠+1 is simple to see as 𝑊 is a 
prefix of 𝑊 [0 . . 𝑞 −1]𝑊 . For the latter inequality 𝛼𝑠 ≤ 𝛼𝑠+1, notice that 
if |𝑊 | is a multiple of 𝑞, then we can apply a proof symmetric to the 
one for 𝛽 ’s. Otherwise 𝛼𝑠+1 < 𝛼𝑠 ≤ 𝑗𝑠 for 𝑠 ≥ 1 would imply a non-trivial 
border of 𝑊 of length 𝑞 (see Fig. 5), which in turn would imply that |𝑊 |− 𝑞 is a period of 𝑊 . By Lemma 2, we have 𝑔𝑐𝑑(𝑞, |𝑊 |− 𝑞) < 𝑞 is 
a period of 𝑊 , which is a contradiction. This completes the proof of the 
claim.

From the claim, it follows that the region obtained for this sequence 
is 𝑋[𝛼1 . . 𝛽𝑚], and only two calls to 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟 are needed. □

In conclusion, as factors 𝑋[𝑘𝓁 . . (𝑘+1)𝓁−1] for 𝑘 ∈ [0,⌊ 𝑛 
𝓁
⌋−1] and 

𝑋[𝑛− 𝓁 . . 𝑛− 1] contain all positions of 𝑋, Lemma 9 has the following 
corollary.

Corollary 1. After an (𝑛)-time preprocessing of the string 𝑋[0 . . 𝑛−1], 
for any highly-periodic factor 𝑊 [0 . .𝓁−1], we can compute the regions 
in 𝑋 which are cyclically covered by 𝑊 in (𝑛∕𝓁) time.

3.3. Finding regions in 𝑋 that are cyclically covered by a 
non-highly-periodic factor 𝑊

The next lemma states that factors of a string 𝑋 that are not highly-
periodic do not occur frequently in 𝑋.

Lemma 10. Let 𝑋 be a string of length 𝑛 and 𝑊 a length-𝓁 non-highly-

periodic factor of 𝑋. Then 𝑊 has (𝑛∕𝓁) occurrences in 𝑋.

Proof. By the definition of highly-periodic, all periods of 𝑊 have to be 
greater than 𝓁∕4. Then any two occurrences of 𝑊 in 𝑋 are at distance 
greater than 𝓁∕4, so 𝑊 must have fewer than 𝑛∕𝓁 occurrences in 𝑋. □

Let 𝑊 be a factor of 𝑋 and let 𝑊 ′ be a factor of 𝑊 . If a cyclic shift 
of 𝑊 contains 𝑊 ′, we call it a 𝑊 ′-containing cyclic shift of 𝑊 .

Consider 𝑊 [0 . .𝓁 − 1] = 𝑊𝑙𝑊𝑟 where |𝑊𝑙| = ⌊𝓁∕2⌋. Lemma 11
shows how to find all regions in 𝑋 covered by cyclic shifts of 𝑊 .
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Lemma 11. Consider 𝑊 [0 . .𝓁 − 1] = 𝑊𝑙𝑊𝑟 where |𝑊𝑙| = ⌊𝓁∕2⌋. For a 
string 𝑋, let 𝐴 be the set of all regions in 𝑋 covered by 𝑊𝑙-containing cyclic 
shifts of 𝑊𝑙𝑊𝑟, and let 𝐵 be the set of all regions in 𝑋 covered by 𝑊𝑟-

containing cyclic shifts of 𝑊𝑟𝑊𝑙 . Then 𝐴 ∪𝐵 forms the set of all regions in 
𝑋 that are cyclically covered by 𝑊 .

Proof. Every cyclic shift of 𝑊 must contain either 𝑊𝑙 or 𝑊𝑟. Hence, 
the lemma follows. □

Next, we describe an algorithm that finds all regions in 𝑋 covered 
by 𝑊𝑙-containing cyclic shifts of 𝑊𝑙𝑊𝑟. All regions in 𝑋 covered by 
𝑊𝑟-containing cyclic shifts of 𝑊𝑟𝑊𝑙 can be found by an analogous al-
gorithm.

To find all regions in 𝑋 covered by 𝑊𝑙-containing cyclic shifts of 
𝑊𝑙𝑊𝑟, we consider two cases: 𝑊𝑙 is highly-periodic or not.

If 𝑊𝑙 is not highly-periodic then it has (𝑛∕𝓁) occurrences in 
𝑋[0 . . 𝑛 − 1] by Lemma 10. Thus, we can find all these occurrences 
in (𝑛∕𝓁) time given the IPM data structure from Lemma 4. Then, by 
calling the function 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟 from Section 3.1, the regions in 
𝑋 covered by these 𝑊𝑙-containing cyclic shifts of 𝑊 can be found in 
(𝑛∕𝓁) time.

For a highly periodic 𝑊𝑙 , let 𝑞𝑙 ≤ 𝓁∕8 be its shortest period and let 
𝑑𝑙 be the length of the longest prefix of 𝑊 which is 𝑞𝑙-periodic. Let 
us also denote 𝑊𝑙′ = 𝑊 [0 . . 𝑑𝑙 − 1] and 𝑊𝑟′ = 𝑊 [𝑑𝑙 . .𝓁 − 1]. Notice 
that if 𝑊𝑟′𝑊𝑙′ is highly-periodic, we can simply reduce our problem 
to the case with a highly-periodic 𝑊 as any cyclic shift of 𝑊 is also 
a cyclic shift of 𝑊𝑟′𝑊𝑙′ . Furthermore, a 𝑊𝑙-containing cyclic shift of 
𝑊 (𝑑-cyclic shift of 𝑊 for 𝑑 = 0 or 𝑑 ≥ |𝑊𝑙|) is always a 𝑊𝑙′𝑊 [𝑑𝑙]-
containing factor of 𝑊 (for 𝑑 = 0 or 𝑑 > 𝑑𝑙) or a 𝑊𝑟′𝑊𝑙-containing 
factor of 𝑊 (for |𝑊𝑙| ≤ 𝑑 ≤ 𝑑𝑙).

It remains to show that for a highly-periodic 𝑊𝑙 , when 𝑊 and 
𝑊𝑟′𝑊𝑙′ are not highly-periodic then 𝑊𝑙′𝑊 [𝑑𝑙] and 𝑊𝑟′𝑊𝑙 are not 
highly-periodic as well. The next two lemmas handle this last case.

Lemma 12. 𝑊𝑙′𝑊 [𝑑𝑙] is non-periodic (hence also non-highly-periodic).

Proof. For the purpose of obtaining a contradiction, suppose that 
𝑊 [0 . . 𝑑𝑙] =𝑊𝑙′𝑊 [𝑑𝑙] has period 𝑞′ ≤ (𝑑𝑙 + 1)∕2. This means that 𝑊𝑙′

has both periods 𝑞𝑙 and 𝑞′. Since 𝑞𝑙 +𝑞′ ≤ 𝓁∕8+(𝑑𝑙 +1)∕2 ≤ 𝑑𝑙 , we have 
that 𝑔𝑐𝑑(𝑞𝑙, 𝑞′) is also a period of 𝑊𝑙′ by Lemma 2.

We observe that 𝑞′ cannot be a multiple of 𝑞𝑙 as in this case 𝑊 [𝑑𝑙] =
𝑊 [𝑑𝑙 − 𝑞′] =𝑊 [𝑑𝑙 − 𝑞𝑙], which contradicts the definition of 𝑑𝑙 . Hence 
we get 𝑔𝑐𝑑(𝑞𝑙, 𝑞′) < 𝑞𝑙 , which in turn contradicts the fact that 𝑞𝑙 is the 
shortest period of 𝑊𝑙′ . □

Lemma 13. 𝑊𝑟′𝑊𝑙 is not highly-periodic.

Proof. Suppose, on the contrary, that 𝑊𝑟′𝑊𝑙 has period 𝑞′ ≤ |𝑊𝑟′𝑊𝑙|∕4 
≤ 𝓁∕4. This means that 𝑊𝑙 has both periods 𝑞𝑙 and 𝑞′. Since 𝑞𝑙+𝑞′ ≤ 𝓁∕2
by Lemma 2 𝑔𝑐𝑑(𝑞𝑙, 𝑞′) is also a period of 𝑊𝑙 .

If 𝑞′ is a multiple of 𝑞𝑙 , then 𝑊𝑟′𝑊𝑙′ is also 𝑞′ ≤ 𝓁∕4 periodic contrary 
to the assumptions, otherwise 𝑔𝑐𝑑(𝑞𝑙, 𝑞′) < 𝑞𝑙 which contradicts that 𝑞𝑙
is the shortest period of 𝑊𝑙 . □

3.4. The cyclic covers problem

Now, we are ready to define a function 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑙,𝑊𝑟,𝑋, 
𝓁) that returns all regions in 𝑋 that are covered by 𝑊𝑙-containing cyclic 
shifts of a length 𝓁 factor 𝑊 . This function is described in Algorithm 1.

Lemma 14 summarizes the time complexity of 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑙, 
𝑊𝑟,𝑋,𝓁).

Lemma 14. Given the 𝑙𝑐𝑝, IPM and 2-Period data structures for 𝑋, we can 
compute 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑙,𝑊𝑟,𝑋,𝓁) (and 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑟, 
𝑊𝑙,𝑋,𝓁)) in (𝑛∕𝓁) time.

Algorithm 1 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑙,𝑊𝑟,𝑋,𝓁).
Output: Regions in 𝑋 covered by 𝑊𝑙-containing cyclic shifts of 𝑊

1: Calculate shortest period 𝑞𝑙 of 𝑊𝑙

2: 𝑊𝑙′ =𝑊 [0 . . 𝑑𝑙 − 1] and 𝑊𝑟′ =𝑊 [𝑑𝑙 . .𝓁 − 1].
3: If 𝑊 =𝑊𝑙𝑊𝑟 or 𝑊𝑟′𝑊𝑙′ is of period ≤ 𝓁∕4, apply Corollary 1 to find the 

regions of 𝑋 covered by 𝑊 and return the answer.
4: 𝐴𝑛𝑠 = ∅
5: if 𝑊𝑙 is not highly-periodic then

6: Find 𝑚𝑙 = 𝑗1,… , 𝑗𝑚 such that 𝑋[𝑗𝑠 . . 𝑗𝑠 + |𝑊𝑙|− 1] =𝑊𝑙

7: For each 𝑗𝑠, 𝐴𝑛𝑠=𝐴𝑛𝑠 ∪ 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,0, 𝑗𝑠)
8: else

9: Find 𝑚𝑙 = 𝑗1,… , 𝑗𝑚 such that 𝑋[𝑗𝑠 . . 𝑗𝑠 + 𝑑𝑙] =𝑊𝑙′𝑊 [𝑑𝑙]
10: For each 𝑗𝑠, 𝐴𝑛𝑠=𝐴𝑛𝑠 ∪ 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,0, 𝑗𝑠)
11: Find 𝑚𝑙 = 𝑗1,… , 𝑗𝑚 such that 𝑋[𝑗𝑠 . . 𝑗𝑠 + |𝑊𝑟′𝑊𝑙|− 1] =𝑊𝑟′𝑊𝑙

12: For each 𝑗𝑠, 𝐴𝑛𝑠=𝐴𝑛𝑠 ∪ 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(𝑊 ,𝑋,𝑑𝑙, 𝑗𝑠)
13: end if

14: Return 𝐴𝑛𝑠

Proof. Let us first assume that we know an occurrence in 𝑋 of any given 
string. To check whether 𝑊 and 𝑊𝑙 are (highly-)periodic, it is enough 
to query the 2-Period data structure from Lemma 5. Later, with the use 
of a single 𝑙𝑐𝑝 query (𝑙𝑐𝑝(𝑋,𝑋[𝑞𝑙 . . 𝑛−1]) in this case), one can compute 
𝑑𝑙 . 𝑊𝑟′𝑊𝑙′ can only be highly periodic if 𝑊𝑙 is periodic with the same 
period, hence a check of whether it is highly periodic only requires a 
comparison between parts of 𝑊𝑙 and 𝑊𝑟 which takes (1) time in total. 
After determining which method to use, the algorithm performs (𝑛∕𝓁)
calls to 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟, which results in a total time complexity of 
(𝑛∕𝓁).

In general, we do not know the occurrences of some of the strings 
(for example 𝑊𝑟𝑊𝑙), or even if they occur in 𝑋 at all. To address this 
issue and be able to use the internal data structures we make some ad-
justments.

For the cyclic shifts of 𝑊 , namely, 𝑊𝑟𝑊𝑙,𝑊𝑟′𝑊𝑙′ and its counter-
part used by 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑟,𝑊𝑙,𝑋,𝓁), we only need to check 
whether they are highly-periodic and employ the 𝑙𝑐𝑝 (or 𝑙𝑐𝑝𝑟) with an-
other string. To address the first point, it is sufficient to check whether 
their longest factor which appears in 𝑊 is periodic, and whether the pe-
riod can be extended to the whole string (with 𝑙𝑐𝑝 queries). This factor 
must be of length at least 𝓁∕2; hence, it must be periodic if the whole 
string is highly-periodic. Its shortest period is the only candidate for the 
shortest period (of length at most 𝓁∕4) of the whole string. As for the 
second point, 𝑙𝑐𝑝, this is only used by Lemma 7, where this problem has 
already been solved.

Another string which does not need to appear in 𝑋 is 𝑊𝑟′𝑊𝑙 (sym-
metrically (𝑊𝑟𝑊𝑙)[0 . . 𝑑𝑟] used by 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑟,𝑊𝑙,𝑋,𝓁)). We 
make use of this string only if 𝑊𝑙 is highly periodic. Using the 𝑙𝑐𝑝𝑟 query, 
we can find how far this period extends to the left in 𝑊𝑟′𝑊𝑙 . Now, in-
stead of looking for the whole 𝑊𝑟′𝑊𝑙 in the parts of 𝑋, we simply look 
for 𝑊𝑙 . If a whole arithmetic sequence (𝑗1, 𝑞𝑙,𝑚) of occurrences is found, 
then we know that only one of those occurrences can be extended to the 
whole 𝑊𝑟′𝑊𝑙 (with 𝑗𝑘+1, where 𝑘 is equal to the number of periods of 
𝑊𝑙 at the end of 𝑊𝑟′ ). This way, we can process the whole 𝑋 in (𝑛∕𝓁)
time. □

We now present our main result in Theorem 1.

Theorem 1 (Cyclic covers problem). Given a string 𝑋 of length 𝑛 over an 
integer alphabet, we can find all integers 𝓁 > 0 such that the prefix 𝑋[0 . .𝓁−
1] is a cyclic cover of 𝑋 in (𝑛 log𝑛) total time.

Proof. We will now describe how we extend the algorithms 
𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑙,𝑊𝑟,𝑋,𝓁) and 𝐹 𝑖𝑛𝑑𝐶𝑦𝑐𝑙𝑖𝑐𝐶𝑜𝑣𝑒𝑟(𝑊𝑟,𝑊𝑙,𝑋,𝓁) to 
verify if every position in 𝑋 is covered by the regions returned in (𝑛∕𝓁)
time.

In the preprocessing step, we construct the Internal Data Struc-
ture answering 𝑙𝑐𝑝, IPM, and 2-Period queries in (𝑛) time (Lem-
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mas 3 and 5). For any fixed 𝓁, let 𝑊𝑙 = 𝑋[0 . . ⌊𝓁∕2⌋ − 1] and 𝑊𝑟 =
𝑋[⌊𝓁∕2⌋ . .𝓁 − 1].

For a given 𝓁, we will identify occurrences of 𝑊𝑙-containing cyclic 
shifts of 𝑊𝑙𝑊𝑟 and 𝑊𝑟-containing cyclic shifts of 𝑊𝑟𝑊𝑙 (Lemma 11). 
We have the following three cases: If 𝑊 is highly periodic, if 𝑊𝑙 is 
highly periodic and if 𝑊𝑙 is not highly periodic. This only requires a 
comparison between parts of 𝑊𝑙 and 𝑊𝑟 which takes (1) time in total. 
If 𝑊 is highly periodic, then we use Corollary 1 to identify occurrences 
of 𝑊 in (𝑛∕𝓁) time. Else, if 𝑊𝑙 is not highly periodic, then we identify 
all occurrences of 𝑋[𝑗𝑠 . . 𝑗𝑠 + |𝑊𝑙|− 1] =𝑊𝑙 and store it in an array 𝐴𝑙

using (𝑛∕𝓁) time (Lemma 10).
Otherwise if 𝑊𝑙 is highly periodic, we compute its shortest period, 

𝑞𝑙 and the length of the longest prefix of 𝑊 which is 𝑞𝑙-periodic (𝑑𝑙). If 
𝑊𝑟′𝑊𝑙′ (= 𝑊 [𝑑𝑙 . .𝓁 − 1]𝑊 [0 . . 𝑑𝑙 − 1]) is highly periodic, then we cal-
culate occurrences in (𝑛∕𝓁) time using Corollary 1.

Otherwise if 𝑊𝑟′𝑊𝑙′ is not highly periodic, then we identify all oc-
currences of 𝑋[𝑗𝑠 . . 𝑗𝑠 + 𝑑𝑙] =𝑊𝑙′𝑊 [𝑑𝑙] (Lemma 12) and store it in an 
array 𝐴𝑙1. We also identify all occurrences of 𝑋[𝑗𝑠 . . 𝑗𝑠 + |𝑊𝑟′𝑊𝑙|−1] =
𝑊𝑟′𝑊𝑙 (Lemmas 13 and 14) and store it in an array 𝐴𝑙2. As each sub-
string is not highly periodic, there are at most 𝑛∕𝓁 occurrences in 𝑋
and we can use Lemma 3 to identify all occurrences in (𝑛∕𝓁) time. 
The same method is repeated to identify 𝑊𝑟-containing cyclic shifts and 
also takes (𝑛∕𝓁) time.

For each of the arrays 𝐴𝑙 (if 𝑊𝑙 is not highly periodic) or 𝐴𝑙1 and 𝐴𝑙2
(if 𝑊𝑙 is highly periodic), and similarly 𝐴𝑟1

and 𝐴𝑟2 or 𝐴𝑟 (depending on 
if 𝑊𝑟 is highly periodic or not), we initialize variables first𝑙 , first𝑙1, first𝑙2, 
first𝑟1, first𝑟2 and first𝑟, and set them to the first element of each array, in 
(1) time. Each of these variables is used to keep track of the 𝑊𝑙 or 𝑊𝑟-
containing regions we have computed. Next, we compare first𝑙 (or first𝑙1
and first𝑙2) with first𝑟 (or first𝑟1 and first𝑟2), to identify the next occurrence 
of 𝑊𝑙 or 𝑊𝑟 in 𝑋, and perform an instance of 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟(). The 
value of first𝑙∕first𝑙1∕first𝑙2∕first𝑟∕first𝑟1∕first𝑟2 is updated to next position 
in its array. We must also check that the leftmost position of the region 
returned by 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟() is left to the rightmost position of the 
string that has been covered so far, which takes (1) time to check. If 
at any point, we find a region that does not overlap with the covered 
region, then we return that 𝑋 does not have a cyclic cover of length 𝓁. 
This part of checking and traversing arrays is repeated until we have ex-
amined and performed 𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟() for all occurrences in each 
array. It will take (𝑛∕𝓁) time to traverse each array, as there are at 
most 4 arrays to traverse, where each array contains at most 𝑛∕𝓁 occur-
rences by Lemmas 12 and 13. It will also take (𝑛∕𝓁) time to compute 
𝐹 𝑖𝑛𝑑𝐹 𝑖𝑥𝑒𝑑𝐶𝑜𝑣𝑒𝑟() for all occurrences in each array.

The total time to test all 𝓁 = 1,… , 𝑛 is upper-bounded by (
∑𝑛

𝓁=1
𝑛 
𝓁
) 

= (𝑛 log𝑛), using the asymptotic formula for the 𝑛th harmonic num-
ber. □

4. Concluding remarks

In this article, we introduced the problem of finding all the distinct 
cyclic covers of a string of length 𝑛 and gave an algorithm for solving it 
in (𝑛 log𝑛) time (Theorem 1). We conclude the article by defining two 
other closely related problems that can be solved even more efficiently.

4.1. Cyclic borders

A prefix of the form 𝑋[0 . .𝓁 − 1] of a string 𝑋 is a cyclic border of 
𝑋 if it is a cyclic shift of the suffix 𝑋[𝑛 − 𝓁 . . 𝑛 − 1]. See Fig. 6 for an 
illustration.

The cyclic borders problem is to output the lengths of all prefixes of an 
input string 𝑋 that are cyclic borders of 𝑋. The cyclic borders problem is 
solvable in (𝑛) time, where 𝑛 = |𝑋|, by using Lemma 4: First construct 
the IPM data structure for 𝑋 in (𝑛) time, and then just check for each 
𝓁 = 1,… , 𝑛 in (1) time if the prefix 𝑋[0 . .𝓁 − 1] is a cyclic shift of the 
corresponding suffix 𝑋[𝑛− 𝓁 . . 𝑛− 1].
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Fig. 6. The string 𝑋 = 𝚊𝚋𝚋𝚊𝚋𝚋𝚋𝚋𝚊𝚋𝚊𝚋 has cyclic borders of lengths 2, 3, 5, 
and 12 because 𝑋[10 . .11] = 𝚊𝚋 = 𝑋[0 . .1], 𝑋[9 . .11] = 𝚋𝚊𝚋 is a cyclic shift 
of 𝑋[0 . .2] = 𝚊𝚋𝚋, 𝑋[7 . .11] = 𝚋𝚊𝚋𝚊𝚋 is a cyclic shift of 𝑋[0 . .4] = 𝚊𝚋𝚋𝚊𝚋, and 
the whole string 𝑋 is a cyclic border of itself.
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Fig. 7. The string 𝑋 = 𝚊𝚋𝚋𝚋𝚊𝚋𝚋𝚋𝚊𝚋𝚊𝚋 has cyclic periods 3, 6, and 12. Here, 𝑋
is 3-cyclic periodic because it can be divided into four consecutive substrings 
that are cyclic shifts of the factor 𝚊𝚋𝚋. 𝑋 is also 6-cyclic periodic since it can be 
broken into two consecutive substrings that are both circular factors of 𝚊𝚋𝚋𝚋𝚊𝚋, 
and trivially 12-cyclic periodic.

Theorem 2 (Cyclic borders problem). Given a string 𝑋 of length 𝑛 over an 
integer alphabet, we can find all integers 𝓁 > 0 such that the prefix 𝑋[0 . .𝓁−
1] is a cyclic border of 𝑋 in (𝑛) total time.

4.2. Cyclic factorization

A cyclic factorization of a string 𝑋 is a partition of 𝑋 into factors of 
equal length such that each resulting factor is a cyclic shift of all the 
others. If there exists a cyclic factorization of 𝑋 in which the factors 
have length 𝓁 then 𝓁 is called a cyclic period of 𝑋 and 𝑋 is called 𝓁-

cyclic periodic. For an example, see Fig. 7.
The cyclic factorization problem takes as input a string 𝑋 and asks for 

all of the cyclic periods of 𝑋. It can be solved as follows. Construct the 
IPM data structure for 𝑋 in (𝑛) time in a preprocessing step, and then, 
for every 𝓁 that divides 𝑛 (written as 𝓁 | 𝑛) if all of the 𝑛 

𝓁
consecutive 

nonoverlapping length-𝓁 factors of 𝑋 are cyclic shifts of 𝑋[0 . .𝓁 − 1], 
include 𝓁 in the output. By Lemma 4, the preprocessing takes (𝑛) time, 
after which checking if any pair of factors are cyclic shifts of each other 
takes (1) time. In total, the time complexity is (𝑛) +(

∑
𝓁 | 𝑛 𝑛 

𝓁
⋅ 1) =

(𝑛 log log𝑛), due to the bound 
∑

𝓁 | 𝑛 𝑛 
𝓁
=(𝑛 log log𝑛) from [15, Equa-

tion (13)].

Theorem 3 (Cyclic factorization problem). Given a string 𝑋 of length 𝑛 over 
an integer alphabet, we can find all integers 𝓁 > 0 such that 𝑋 is 𝓁-cyclic 
periodic in (𝑛 log log𝑛) total time.
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Addendum

After the completion of the work in this article, a faster solution 
to the cyclic covers problem was discovered by Iliopoulos et al. [22]. 
They developed a new, non-trivial data structure for efficiently answer-
ing internal circular pattern matching queries which generalizes the IPM 
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data structure from [27] and that can be used to solve the cyclic cov-
ers problem in optimal (𝑛) time. Although their algorithm requires 
strengthened versions of our Lemmas 6, 7, and 14, its fundamental strat-
egy is quite different from the one used here, as it relies on computing 
families of important short substrings and applying the algorithm re-
cursively. In addition, Iliopoulos et al. [22] gave a faster algorithm for 
the cyclic factorization problem that runs in (𝑛) time. Their refined 
method still checks if 𝓁 is a cyclic period for each 𝓁 that divides 𝑛 like 
the method in Theorem 3 above, but it tests candidate covers of short 
lengths more efficiently via deterministic substring hashing and count-
ing.
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