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Abstract. The rooted triplet distance measures the structural dissimi-
larity between two rooted phylogenetic trees (unordered trees with dis-
tinct leaf labels and no outdegree-1 nodes) having the same leaf label set.
It is defined as the number of 3-subsets of the leaf label set that induce
two different subtrees in the two trees. The fastest currently known algo-
rithm for computing the rooted triplet distance was designed by Brodal et
al. (SODA 2013). It runs in O(n log n) time, where n is the number of leaf
labels in the input trees, and a long-standing open question is whether
this is optimal or not. In this paper, we present two new o(n log n)-time
algorithms for the special case of caterpillars (rooted phylogenetic trees
in which every node has at most one non-leaf child), thus breaking the
O(n log n)-time bound for a fundamental class of trees. Our first algo-
rithm makes use of a dynamic rank-select data structure by Raman et
al. (WADS 2001) and runs in O(n log n/ log log n) time. Our second algo-
rithm relies on an efficient orthogonal range counting algorithm invented
by Chan and Pǎtraşcu (SODA 2010) and runs in O(n

√
log n) time.

Keywords: Phylogenetic tree · Caterpillar · Rooted triplet distance ·
Dynamic rank-select data structure · Orthogonal range counting

1 Introduction

Phylogenetics is the study of evolutionary relationships between different species
or groups. To describe a set of inferred evolutionary relationships, scientists com-
monly use a phylogenetic tree, which is a leaf-labeled tree where each leaf repre-
sents one entity such as a biological species. It is a diagrammatic representation
of evolutionary history such that the more closely related two species are, the
closer they are to each other in the tree.

Similarity measures between phylogenetic trees are frequently used in phylo-
genetics. For instance, analysis methods such as Bayesian inference [9] produce
a set of phylogenetic trees that are the most likely to represent true evolutionary
history. A consensus method is then applied to condense them into a single tree
which is close to the original set based on some well-defined measure. Another
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use case of similarity measures is for evaluating new phylogenetic tree or network
reconstruction methods. As explained in [15], in one evaluation method, some
biomolecular sequences are evolved according to a model of evolution represented
by a base tree and then the new reconstruction method generates a tree from
these evolved sequences. The similarity between the base tree and the generated
tree then gives an indicator of the quality of the reconstruction method.

One of the earliest similarity measures proposed that is still popular today
is the Robinson–Foulds metric [19], which counts the number of clusters (leaf
label sets of subtrees rooted at the nodes in the trees) that can only be found
in one tree and not the other. It can be computed in linear time [7], but has
the disadvantage that a small change in the input trees can lead to a huge
change in the value. As an example, suppose the input consists of two identical
caterpillars. If we were to move a single leaf from the bottom of one tree to
the top, the Robinson-Foulds distance would go from zero to near its maximum
possible value even though the two trees still share a lot of branching structure.

Another previously well-studied measure is the is the NNI (nearest neigh-
bor interchange) distance [18], which counts the number of branch-swapping
transformations needed to turn one input tree into the other. However, it has
remained of mostly theoretical interest as it has been proved that computing the
NNI distance is NP-hard [6].

The Kendall-Colijn metric [12] is computed by finding the lowest common
ancestors of each leaf pair in the two input trees, and comparing the difference
in distance to the root node. This measure can be computed in O(n2) time, but
has the disadvantage that leaves close to the root will influence the score more
than leaves further away from the root.

Finally, the rooted triplet distance [8] (defined formally in Sect. 1.1 below)
counts the number of 3-subsets of the leaf label set that induce two different
subtrees in the two trees. Its main advantages are that it is robust to small
changes in the input [1] and that it can be computed in polynomial time (see
Sect. 1.2). The rooted triplet distance has since its inception found a wide range
of practical applications in phylogenetics, as well as in other fields of biology.
See [13,14,16] for examples.

In this paper, we focus on fast algorithms for the rooted triplet distance.

1.1 Problem Definitions

A rooted phylogenetic tree (from here on called a tree for short) is a rooted,
unordered tree where each internal node has at least two children, and the leaves
are distinctly labeled by a set of leaf labels. A caterpillar is a tree where every
node has at most one non-leaf child. To simplify the presentation below, we will
identify every leaf in a tree with its unique label.

A rooted triplet is a tree with exactly three leaves. A resolved triplet is a
rooted triplet where two of its leaves, say x, y, have a common parent that is
not a parent of the remaining leaf z. We write xy|z to denote such a resolved
triplet. In contrast, an unresolved triplet is a rooted triplet where all three leaves
have the same parent. An unresolved triplet with leaves x, y, z will be denoted
by x|y|z. Unresolved triplets are also referred to as fan triplets in the literature.



Fast Algorithms for the Rooted Triplet Distance Between Caterpillars 329

a eb c d a eb c d

T1 T2

Fig. 1. An example: T1 and T2 are two rooted phylogenetic trees with leaf label set
{a, b, c, d, e}, and T1 is a caterpillar. Observe that, e.g., the resolved triplet ac|d is consis-
tent with T1 but not T2, while the unresolved triplet a|c|e is consistent with T2 but not
T1. Since rt(T1) = {ab|c, ab|d, ab|e, ac|d, ac|e, ad|e, bc|d, bc|e, bd|e, cd|e} and rt(T2) =
{ab|c, ab|d, ab|e, cd|a, a|c|e, a|d|e, cd|b, b|c|e, b|d|e, cd|e}, we have drt(T1, T2) = 6.

A resolved triplet xy|z is said to be consistent with a tree T if the lowest
common ancestor (LCA) of x, y in T is a proper descendant of the LCA of all
three leaves in T . An unresolved triplet x|y|z is said to be consistent with T if
the LCA of all three leaves are the same in T as the LCA of any two leaves.
Define rt(T ) to be the set of all rooted triplets that are consistent with T . If
T1, T2 share the same set of leaf labels, define the rooted triplet distance between
T1 and T2, written as drt(T1, T2), as 1

2 |rt(T1)�rt(T2)|, where � denotes the
symmetric difference. See Fig. 1 for an example.

The rooted triplet distance problem can be stated as follows:

The Rooted Triplet Distance Problem
Input: Two rooted phylogenetic trees T1, T2 with the same leaf label set Λ.
Output: The rooted triplet distance drt(T1, T2).

In the rest of the paper, we let n be the number of leaves in each input tree.

1.2 Previous Results

The rooted triplet distance was introduced in 1975 by Dobson [8]. A straightfor-
ward algorithm for computing it runs in O(n3) time. In 1996, Critchlow et al. [5]
presented an O(n2)-time algorithm for the special case of two binary trees which
categorizes triplets based on their potential ancestor pairs. In 2011, Bansal et
al. [1] gave an O(n2)-time algorithm that computes the distance between two
unrestricted trees by using postorder tree traversals. In 2013, Sand et al. [20]
described an O(n log2 n)-time algorithm for binary trees using a data structure
called the hierarchical decomposition tree (HDT). Brodal et al. [2] developed an
HDT-based O(n log n)-time algorithm that works for trees of arbitrary degrees.
Jansson and Rajaby [11] later proposed an O(n log3 n)-time algorithm, modified
from [2] by using a simpler data structure called the centroid path decomposi-
tion tree, that although slower in theory, runs faster in practice for values of n
up to 4, 000, 000. Subsequently, Brodal and Mampentzidis [3] designed an even
more practical O(n log n)-time algorithm that scales to external memory, using a
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Table 1. Previous results on the rooted triplet distance problem

Year Reference Degree Time complexity

1975 Dobson [8] Arbitrary O(n3)

1996 Critchlow et al. [5] Binary O(n2)

2011 Bansal et al. [1] Arbitrary O(n2)

2013 Sand et al. [20] Binary O(n log2 n)

2013 Brodal et al. [2] Arbitrary O(n log n)

2017 Jansson and Rajaby [11] Arbitrary O(n log3 n)

2017 Brodal and Mampentzidis [3] Arbitrary O(n log n)

2019 Jansson et al. [10] Arbitrary O(qn)

further modified centroid decomposition technique. Recently, an algorithm with
time complexity O(qn), where at least one of the input trees has at most q
internal nodes, was given by Jansson et al. [10]. See Table 1 for a summary.

1.3 New Results and Organization of Paper

We present two new algorithms for the rooted triplet distance problem restricted
to caterpillars. The first algorithm is simple to implement and performs well in
practice, while the second algorithm is even faster in theory, having a lower
time complexity. These two algorithms are the first to achieve sub-O(n log n)
time complexity for any non-trivial special cases of the rooted triplet distance
problem when the number of internal nodes is unrestricted.

In Sect. 2 we give definitions, preliminary results, and summaries of data
structures that will be used in the following sections. The first algorithm, pre-
sented in Sect. 3, computes the distance in O(n log n/ log log n) time by defining
a series of steps to transform one input tree to the other, and counts the number
of rooted triplets that change in each step using the rank-select data structure by
Raman et al. [17]. The second algorithm, presented in Sect. 4, uses the orthogonal
range counting algorithm by Chan and Pǎtraşcu [4], and computes the distance
in O(n

√
log n) time by mapping each leaf label onto a 2-D grid and then making

O(n) orthogonal range counting queries on the grid. Finally, Sect. 5 summarizes
our new results and lists some open problems.

2 Preliminaries

First, we describe the tree transformation steps to be used in the first algorithm.
They allow us to break down the transformation of one input tree into the other
into a series of steps, and compute the rooted triplet distance by adding up the
changes in triplets that occur in each step.
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Given two input trees on label set Λ, call one of them the start tree Tstart,
and the other one the goal tree Tgoal. Fixing Tgoal, define good(T ) to be the
set of all 3-subsets of Λ that induce the same rooted triplet in T as in Tgoal.
Define bad(T ) to be the set of all 3-subsets of Λ that induce different triplets
in T and Tgoal. Then, given trees T, T ′, define Φ(T, T ′) = |bad(T ) ∩ good(T ′)|−
|good(T ) ∩ bad(T ′)|.

We may view Φ(T, T ′) as the change in drt with respect to Tgoal as we
transform T into T ′. Φ counts the number of triplets that are turned from
bad to good, and subtracts the number of triplets turning from good to bad.
Rewriting drt(T, Tgoal) = |bad(T )| and drt(T ′, Tgoal) = |bad(T ′)|, we see that
drt(T, Tgoal) = Φ(T, T ′) + drt(T ′, Tgoal).

If we can find a sequence of trees and the Φ-values between any two adjacent
trees, then we can compute the triplet distance between any two trees in the
sequence by summing up these Φ-values. This gives us a method for computing
drt(Tstart, Tgoal):

Lemma 1. Let T1 = Tstart, T2, . . . , Tk−1, Tk = Tgoal be a sequence of trees. Then
drt(Tstart, Tgoal) =

∑k−1
i=1 Φ(Ti, Ti+1).

Next, we demonstrate that we can ignore most leaves of a tree if the changes
in a transformation step are contained in some small subsets:

Lemma 2. Given trees Ta, Tb, u ∈ Ta, and v ∈ Tb, let T ′
a, T ′

b be subtrees of
Ta, Tb rooted at u, v respectively. Obtain T ′′

a , T ′′
b by replacing T ′

a, T ′
b each by a

single node. Then Φ(Ta, Tb) = Φ(T ′
a, T ′

b) if T ′′
a and T ′′

b are isomorphic.

The lemma holds because the condition implies that only those rooted triplets
whose three leaves all lie inside T ′

a and T ′
b will affect Φ(Ta, Tb).

Our first algorithm makes use of a data structure based on the dynamic rank-
select data structure by Raman et al. [17]. A query tree Q stores a multiset of
integers in [1..n], and supports the following operations:

– insert(a): insert a value a to Q.
– query(a): output the number of inserted values less than a.

The insert, query operations are respectively direct analogs to the update,
sum operations in [17]. The next lemma summarizes its time complexity.

Lemma 3. There is a data structure that supports the insert and query oper-
ations in O(log n/ log log n) time.

Finally, in our second algorithm, we will use an orthogonal range counting
result given by Chan and Pǎtraşcu [4]. We restate Corollary 2.3 from [4] here:

Lemma 4. Given n points and n axis-aligned rectangles on the grid, we can
obtain the number of points inside each rectangle in O(n

√
log n) total time.
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3 The First Algorithm

The main idea behind this algorithm is to treat the input caterpillars as lists
of leaves, and transform one list into the other by performing insertion sort on
the list while moving one group of leaves at a time. See Algorithm 1 for the
pseudocode. We first describe the sequence of intermediate caterpillars used in
the transformation from Tstart to Tgoal. We then show how drt(Tstart, Tgoal) can
be computed by performing O(n) insertions and queries to the rank-select query
tree, which by Lemma 3 yields a total time complexity of O(n log n/ log log n).

Algorithm 1: Rank-Select Method
Input: Caterpillars Tstart, Tgoal on label set Λ.
Output: drt(Tstart, Tgoal)

1 Relabel Tstart, Tgoal;
2 Build query tree Q according to input size n;
3 Parse Tstart to obtain leaf groups G1, . . . , Gm;
4 foreach Gi do
5 Perform insertions and queries to Q to get values |Ai|, |Bi|, . . .;
6 Compute Φ(Ti−1, Ti) using values |Ai|, . . .;
7 end
8 Compute and output

∑
Φ(Ti−1, Ti);

Define a mapping Λ → Z such that the labels of each leaf in Tgoal is mapped
to the distance from the leave to the internal node that is the farthest from
the root. Then, apply this mapping to both Tgoal and Tstart. See Fig. 2 for an
example. Note that the leaves will no longer be distinctly labeled and that all
leaves in Tgoal having the same parent will receive the same label.

Define a leaf group of a tree T as a maximal multiset of identical leaf labels
in which each element corresponds to a distinct leaf in T and the leaves corre-
sponding to its elements all have the same parent in T . In Fig. 2, the multisets
{5}, {2, 2}, {1, 1} are leaf groups in Tstart, while {2} and {4, 4} are not. Two
leaf groups G1, G2 are said to be connected if their leaves are siblings in T .

Let U, V be multisets of Λ. Define U ≺ V if for all u ∈ U, v ∈ V , u < v by
their value. Write U � V if u = v, and U 	 V if u ≤ v, for all u ∈ U, v ∈ V .

1
1

1
2

2
3

3
4

4
4

5

3
1

4
2

2
5

4
4

1
1

3

Tgoal Tstart

Fig. 2. In this example, after relabeling the leaves according to Tgoal, the leaf groups
in Tstart are {3}, {1}, {4}, {2, 2}, {5}, {4}, {4}, {1, 1}, {3}.
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3.1 Algorithm Description

To apply the insertion sort strategy, represent trees as lists of leaf groups. Given
any T , define the ordering of T to be a list of leaf groups in T , subject to the
following additional rules:

– The ordering of the leaf groups follows a post order traversal.
– A set of connected leaf groups appear in the list in ascending order, so that

if G1, G2, . . . , Gk are connected groups listed in this order, then G1 	 G2 	
· · · 	 Gk.

In Fig. 2, the ordering of Tgoal is ({1, 1, 1}, {2, 2}, {3, 3}, {4, 4, 4}, {5}), and
the ordering of Tstart is ({1}, {3}, {4}, {2, 2}, {5}, {4}, {1, 1}, {3}, {4}).

Suppose Tstart has m leaf groups, so that its ordering is (G1, G2, . . . , Gm).
We define a sequence of trees T1 = Tstart, T2, . . . , Tm = Tgoal, where each Ti is
the tree with ordering (Gσi(1), . . . , Gσi(i), Gi+1, . . . , Gm), σi being a permutation
of {1, . . . , i}, and:

– Gσi(1) 	 Gσi(2) 	 · · · 	 Gσi(i).
– Leaf groups Gσi(i) and Gi+1 are not connected.
– Leaf groups in {Gi+1, . . . , Gm} are connected if and only if they are also

connected in Tstart.
– Adjacent leaf groups Gσi(j), Gσi(j+1) are connected if and only if Gσi(j) �

Gσi(j+1).

By Lemma 1, drt(Tstart, Tgoal) =
∑m−1

i=1 Φ(Ti, Ti+1).
Consider leaf group Gi in Ti. Gi may be connected with some Gi+1, . . . , Gi+j .

By Lemma 2, to compute Φ(Ti, Ti+1) it suffices to consider the subtree of Ti

containing G1, . . . , Gi+j . Separate the leaves in this subtree minus Gi into four
(possibly empty) subsets, Ai, Bi, Ci,Di, so that Gi+1, . . . , Gi+j ⊂ Di, Bi � Gi,
and Ai ≺ Gi ≺ Ci.

To transform Ti into Ti+1, we may think of detaching Gi and attaching it
to the parent of Bi, or, if Bi = ∅, attaching it to a new internal node at the
appropriate position. Figure 3 illustrates this process.

Ai

Bi

Ci

Di

Gi

Ti Ai

Bi

Ci

Di

Gi

Ti+1

Fig. 3. Moving Gi in step i
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Table 2. Listing for each type, the induced triplets in Ti, Ti+1, its effects on Φ, and
its counts. Lowercase letters represent leaves in the corresponding subsets, so that
ai ∈ Ai, bi ∈ Bi, . . ., and repeated labels represent distinct leaves. Here, Ei, Fi are
defined as sets of leaves {ci, di} satisfying the given constraints.

Type Ti Ti+1 Effect on Φ Count

{gi, ai, ai} aiai|gi aiai|gi None –

{gi, ai, bi} aibi|gi ai|bi|gi Increased |Gi| |Ai| |Bi|
{gi, ai, ci} aici|gi aigi|ci Increased |Gi| |Ai| |Ci|
{gi, ai, di} ai|gi|di aigi|di Increased |Gi| |Ai| |Di|
{gi, bi, bi} bibi|gi bi|bi|gi Increased |Gi|

(|Bi|
2

)

{gi, bi, ci} bici|gi bigi|ci Increased |Gi| |Bi| |Ci|
{gi, bi, di} bi|gi|di bigi|di Increased |Gi| |Bi| |Di|
{gi, ci, ci} cici|gi gici|ci Increased |Gi|

(|Ci|
2

)

gi|ci|ci
{gi, ci, di} ci|gi|di gici|di Decreased (ci = di) |Gi| |Ei|

None (ci > di) –

Increased (ci < di) |Gi| |Fi|
{gi, di, di} gi|di|di gi|di|di None –

{gi, gi, ai} ai|gi|gi ai|gi|gi None –

{gi, gi, bi} bi|gi|gi bi|gi|gi None –

{gi, gi, ci} ci|gi|gi gigi|ci Increased
(|Gi|

2

) |Ci|
{gi, gi, di} gi|gi|di gigi|di Increased

(|Gi|
2

) |Di|

3.2 Computing Φ

We now show how each Φ can be computed by making O(1) queries to the query
tree Q. Fill the query tree following the ordering of Tstart, where for each leaf
group G of size k and value a, we perform insert(a) k times. By making O(1)
queries at different states of Q, we can get the number of leaves within a range
of values in any continuous range of leaf groups.

By Lemma 2, we only need to consider triplets where each of its leaves are
in one of the subsets Ai, Bi, Ci, Gi,Di. Categorize these triplets based on where
each of its leaves are located. We can immediately disregard most triplet types:
any triplet types not containing at least one leaf from Gi are unchanged, so are
any triplet types where all three of its leaves are in the same subset. For the
remaining types, we list their effect on Φ and counts in Table 2.

The values |Ai|, |Bi|, |Ci| can be found by making O(1) queries to Q for the
number of leaves in G1, . . . , Gi−1 that are less than, equal to, or greater than gi,
respectively. |Gi| can be directly read from each leaf group.
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The values |D|, |E|, |F | can be found using a similar approach. Let {Gi, . . . ,
Gi+j} be a maximal set of connected leaf groups. |D|-values can be computed
using formulas |Di| =

∑j
k=1 |Gi+k| and |Di+k| = |Di+k−1|− |Gi+k|. For the |E|-

values, first make O(j) queries to Q to obtain the number of all possible {c, d}
leaf pairs, where c = d, c ∈ {G1, . . . , Gi−1}, and d ∈ {Gi, . . . , Gi+j}. Subtract
|Bi||Gi| from this total to get |Ei|, and then subtract |Bi+j+1||Gi+j+1| from each
|Ei+j | to obtain |Ei+j+1|. Modifying the query ranges, the same method can be
used to find the |F |-values. The precomputing steps require a number of queries
proportional to the number of leaf groups in the maximal set, therefore adds
O(1) amortized number of queries per leaf group.

For the time complexity of the algorithm, preprocessing involves building a
label map, applying it to Tstart, and retrieving the list of leaf groups. Each one of
these tasks can be done in O(n) time. Then, O(n) insertion and query operations
are needed to compute all Φ-values. By Lemma 3, this proves:

Theorem 1. Given two caterpillars on the same leaf label set of size n, Algo-
rithm 1 computes the rooted triplet distance between them in O(n log n/ log log n)
time.

4 The Second Algorithm

Our second method maps each leaf label onto a 2-D integer grid of size n × n,
according to their positions in the two input caterpillars. This is done so that
by making O(n) queries, we retrieve the total number of good triplets, triplets
that are consistent with both input trees, and thus the rooted triplet distance.
See Algorithm 2 for the pseudocode.

Algorithm 2: Orthogonal Range Counting Method
Input: Caterpillars T1, T2 on leaf label set Λ.
Output: drt(T1, T2).

1 foreach � ∈ Λ do
2 Compute and store the point f(�);
3 end
4 foreach point p in Im f do
5 Perform range counting queries to get the values A, B, C, D;
6 Compute the number of good triplets rooted at p;

7 end
8 Compute and output drt(T1, T2) using Lemma 5;

4.1 Mapping Leaves to the Grid

First, we define the mapping of leaves into the grid. Index the internal nodes of
each input caterpillar T1, T2 in ascending order from the bottom to top, so that
the lowest internal node is labeled 1, its parent is labeled 2, etc.
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p1

p1 + 1

p1 − 1

T1

p2

p2 + 1

p2 − 1

T2

p1
p
2

Z
2

f( )

Fig. 4. f maps each leaf to a point in Z
2 according to its positions in T1 and T2.

Suppose T1 has h1 internal nodes, and T2 has h2 internal nodes. Let S =
[1, h1] × [1, h2] be a subset of Z

2, and define a mapping f : Λ → S, which
maps each leaf label to a point in the grid according to the indices of its parent
nodes in the two input trees. If for leaf �, its parents in T1, T2 are indexed p1, p2
respectively, then � is mapped to the point (p1, p2). See Fig. 4 for an illustration.

Next, define mapping f ′ from the set of good triplets to S as follows. For each
good triplet τ , if the root node of the induced subtree in T1, T2 is indexed p1, p2
respectively, then f ′(τ) = (p1, p2). Summing up the number of good triplets
mapped to each point in Im f ′, we get the total number of good triplets.

4.2 Counting Good Triplets

Consider any point p = (p1, p2). Write Ap, Bp, Cp,Dp for the number of leaves
mapped to the regions {p1}×{p2}, {p1}× [1, p2−1], [1, p1−1]×{p2}, [1, p1−1]×
[1, p2−1] respectively. See Fig. 5. These values will be used to count the number
of good triplets mapped to p. For clarity of presentation, the p-subscripts will
be omitted below.

A

B

C

D

1 2 (p1 − 1)p1

1
2

(p
2 −

1)
p
2

T1

T
2

Fig. 5. Divide [1, p1] × [1, p2] into four regions, and define A, B, C, D as the number of
leaves mapped to each region.
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p1

j k j

p2

ki

ijk
A
3

i

p1

j k j

p2

ki

jk

i

A
2 · B

j

p1

ki j

p2

ki

jki
A
2 · C

j

p1

ki j

p2

ki

jk

i

A
2 ·D

j

p1

ki i

p2

kj

ki

j
ABC

T1 T2 Position Count

Case 1

Case 2

Case 3

Case 4a

Case 4b

(short, short)

(short, long)

(long, short)

(long, long)

(long, long)

Fig. 6. The cases for counting unresolved triplets rooted at point (p1, p2). The Position
column shows the partition of [1, p1] × [1, p2] mirroring Fig. 5, so that the top right
quadrant corresponds to A, etc.

For every resolved triplet, one of its leaves must be a child of node p1 in T1,
and p2 in T2, therefore it is mapped to the area A. The other two leaves are more
related to each other than to the first leaf, which happens only if both leaves
are descendants of an internal node in T1 with index less than p1, and similarly
in T2. This means these leaves are mapped to the area D. To count the number
of good resolved triplets mapped to p, we choose one leaf mapped to A, then
choose two leaves mapped to D. Therefore the number of such triplets is A ·(D

2

)
.

For unresolved triplets, we proceed as follows. An unresolved triplet may
either be short, where all three leaves share the same parent node, or it may be
long, where only two leaves share a parent node, and the third leaf is located
lower in the tree. Counting these triplets splits into four main cases. See Fig. 6.

– Case 1: The triplet is short in both T1, T2. This means that each leaf in such
a triplet must share the same parents, namely, nodes p1, p2 in T1, T2 respec-
tively. Therefore, these leaves are all mapped to the point p. The number of
such triplets is thus

(
A
3

)
.
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– Case 2: The triplet is short in T1, and long in T2. The number of such triplets
is

(
A
2

) · B.
– Case 3: The triplet is long in T1, and short in T2. The number of such triplets

is
(
A
2

) · C.
– Case 4: The triplet is long in both T1, T2. In this triplet, the leaf that is in the

lower position of T1, T2 may or may not be the same leaf. Thus, two subcases
arise:

• Case 4a: They are the same leaf. The number of such triplets is
(
A
2

) · D.
• Case 4b: They are different leaves. The number of such triplets is ABC.

Repeating the above for each point to calculate the total number of good
triplets subsequently gives us the rooted triplet distance:

Lemma 5.

drt(T1, T2) =
(

n

3

)

−
∑

p∈Im f ′

(

A ·
(

D

2

)

+
(

A

3

)

+
(

A

2

)

(B + C + D) + ABC

)

.

The mapping f can be built in O(n) time. Then, for each point p ∈ Im f ′,
we make four range counting queries to find the values A,B,C,D. Afterwards,
apply Lemma 5 to obtain drt(T1, T2).

If f ′(τ) = p, then there is at least one leaf � ∈ τ where f(�) = p also.
Therefore, we have Im f ′ ⊆ Im f . Since |Im f | ≤ n, applying Lemma 4 yields:

Theorem 2. Given two caterpillars on the same leaf label set of size n, Algo-
rithm 2 computes the rooted triplet distance between them in O(n

√
log n) time.

5 Conclusion

The only known lower bound on the time complexity of computing the rooted
triplet distance is the trivial one of Ω(n), which holds because any algorithm has
to look at all of its input at least once. Thus, there is a gap between the known
upper and lower bounds, and to close this gap is a major open problem. In this
paper, we have presented two algorithms that go below the O(n log n)-time upper
bound for a certain special class of inputs, namely caterpillars. Although this
doesn’t solve the open problem, it makes some partial progress. Whether or not
the techniques developed here can be extended to more general (non-caterpillar)
inputs remains to be seen, but we believe our findings open up an interesting
new research direction and that they show there is hope for an o(n log n)-time
algorithm for the general case.

Initial experiments on the first algorithm show promising practical perfor-
mance. A C++ implementation of the algorithm, running on a computer with
AMD Ryzen 7 2700X, 16 GB RAM, Arch Linux with kernel version 5.10.16, and
g++ compiler version 10.2.0, was able to process inputs of size n = 1, 000, 000
in 3.5 s, using 69 MB of memory. The outcome of the experimental results will
be reported in the full version of this paper.
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We conclude with some open questions:

– Can the two algorithms be extended to work on a larger class of input trees?
– Our first algorithm uses a dynamic rank-select data structure that provides

additional operations such as delete and select that are not needed by our
algorithm. Is it possible to design a simpler and faster data structure that
still fits our purposes?

– Is a practical implemention of the second algorithm possible? We note that
certain steps such as the mapping and query steps can be parallelized easily.
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