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We consider a generalization of the rooted triplet distance between two phylogenetic
trees to two phylogenetic networks. We show that if each of the two given phylogenetic
networks is a so-called galled tree with n leaves then the rooted triplet distance can
be computed in o(n2.687) time. Our upper bound is obtained by reducing the problem
of computing the rooted triplet distance between two galled trees to that of counting
monochromatic and almost-monochromatic triangles in an undirected, edge-colored graph.
To count different types of colored triangles in a graph efficiently, we extend an existing
technique based on matrix multiplication and obtain several new algorithmic results that
may be of independent interest: (i) the number of triangles in a connected, undirected,
uncolored graph with m edges can be computed in o(m1.408) time; (ii) if G is a connected,
undirected, edge-colored graph with n vertices and C is a subset of the set of edge colors
then the number of monochromatic triangles of G with colors in C can be computed in
o(n2.687) time; and (iii) if G is a connected, undirected, edge-colored graph with n vertices
and R is a binary relation on the colors that is computable in O (1) time then the number
of R-chromatic triangles in G can be computed in o(n2.687) time.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Phylogenetic trees and their generalization to non-treelike structures, phylogenetic networks, are commonly used by sci-
entists to describe evolutionary relationships [10,14,18,19,22]. In certain applications, it is necessary to compare two given
phylogenetic trees and measure their (dis-)similarity, for example when evaluating methods for phylogenetic reconstruc-
tion [17] or querying phylogenetic databases [2]. Various ways of measuring the dissimilarity of two phylogenetic trees have
been proposed and analyzed in the literature; see [2] and the references therein. One such measure is the rooted triplet
distance [2,3,8,9], which counts the number of substructures (more precisely, subtrees induced by three leaves) that differ
between the two trees. Intuitively, if the two trees are “similar” and share a lot of branching structure then this number
will be small.

Formally, the rooted triplet distance is defined as follows. A rooted phylogenetic tree is an unordered, rooted tree in which
every internal node has at least two children and all leaves are distinctly labeled. A rooted phylogenetic tree with three
leaves is called a rooted triplet. A rooted triplet leaf-labeled by {a,b, c} with exactly one internal node is called a rooted fan
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Fig. 1. The rooted fan triplet a|b|c and the three rooted binary triplets ab|c, ac|b, and bc|a.

triplet and is denoted by a|b|c, and a rooted triplet leaf-labeled by {a,b, c} with exactly two internal nodes is called a rooted
binary triplet; in the latter case, there are three possibilities, denoted by ab|c, ac|b, and bc|a, corresponding to the three
possible topologies. See Fig. 1 for an illustration. A rooted triplet t is said to be consistent with a rooted phylogenetic tree T
if t is an embedded subtree of T , i.e., a|b|c is consistent with T if lcaT (a,b) = lcaT (a, c) = lcaT (b, c), and ab|c is consistent
with T if lcaT (a,b) is a proper descendant of lcaT (a, c) = lcaT (b, c), where for any two leaf labels x and y, lcaT (x, y) denotes
the lowest common ancestor in T of the leaves labeled by x and y. Now, given two rooted phylogenetic trees T1, T2 with
the same set L of leaf labels, the rooted triplet distance drt(T1, T2) is the number of rooted triplets over L that are consistent
with exactly one of T1 and T2.

The rooted triplet distance was introduced by Dobson [9] in 1975. The naive algorithm for computing drt(T1, T2) between
two phylogenetic trees T1 and T2 with a leaf label set of cardinality n runs in O (n3) time: Just preprocess T1 and T2 in
O (n) time so that lowest common ancestor queries can be answered in O (1) time by the method in [13], and then check
each of the O (n3) possible rooted triplets for consistency with T1 and T2 in O (1) time. Critchlow et al. [8] provided a more
efficient algorithm for computing the rooted triplet distance between two binary phylogenetic trees with O (n2) running
time, and Bansal et al. [2] extended the O (n2)-time upper bound to two phylogenetic trees of arbitrary degrees. The current
record is held by Brodal et al. [3], who achieved a running time of O (n logn) for two phylogenetic trees of arbitrary degrees.

Due to the recently increasing popularity of the phylogenetic network model and its potential impact on evolutionary
biology in the near future (see the two textbooks [14,18]), it is compelling to consider generalizations of the rooted triplet
distance to the network case. As observed by Gambette and Huber [11], drt can be canonically extended by replacing the
two trees T1 and T2 in the definition above by two networks. However, for phylogenetic networks, it seems much harder
to improve on the naive O (n3)-time algorithm and to derive a subcubic upper bound on the running time. Therefore, one
would like to know if any important special classes of phylogenetic networks such as the galled trees [12,14] admit fast
algorithms. Galled trees are structurally restricted phylogenetic networks in which all underlying cycles are vertex-disjoint;
for a formal definition, refer to Section 3.3 below. They constitute one of the simplest classes of phylogenetic networks and
are useful in certain settings where reticulation events do occur but are known to be rare [12]. (See, e.g., Figure 9.22 in [14]
for an example of a galled tree for a set of strains of Fusarium graminearum.) As a consequence, a number of algorithms for
building galled trees from different kinds of data have been published [6,12,14–16].

In this article, we focus on the rooted triplet distance and describe how to compute it efficiently when the two input
networks are galled trees. Several other measures of the dissimilarity between two phylogenetic networks, including the
Robinson–Foulds distance, the tripartitions distance, the μ-distance, the nodal distance, and the split nodal distance, were investi-
gated for the special case of galled trees by Cardona et al. in [5]. (See [5] for the definitions of these measures and many
references to the literature.)

1.1. New results

Our main contribution is an o(n2.687)-time algorithm for computing the rooted triplet distance between two galled trees
with n leaves each (Theorem 4). This breaks the natural O (n3)-time barrier for any kind of non-tree phylogenetic networks
for the first time. The precise running time of our algorithm is O (n(3+ω)/2), where ω denotes the exponent in the running
time of the fastest existing method for matrix multiplication. It is currently known that ω < 2.373 [25].

Theorem 4 is obtained in part by a reduction to the problem of counting monochromatic and “almost-monochromatic”
triangles in an undirected graph with colored edges. To solve the latter problem quickly, we strengthen a technique based on
matrix multiplication used in [1] and [24] for detecting if a graph contains a triangle to also count the number of triangles
in the graph. More exactly, we show that:

• The number of triangles in a connected, undirected, uncolored graph with m edges can be computed in O (m
2ω

ω+1 ) �
o(m1.408) time (Theorem 1).

• If G is a connected, undirected, edge-colored graph with n vertices and C is a subset of the set of edge colors then the
number of monochromatic triangles of G with colors in C can be computed in O (n(3+ω)/2) � o(n2.687) time (Theorem 2).

We also need to relax the concept of a monochromatic triangle to what we call an R-chromatic triangle (see Section 2 for
the definition), and obtain:
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• If G is a connected, undirected, edge-colored graph with n vertices and R is a binary relation on the colors that is
computable in O (1) time then the number of R-chromatic triangles in G can be computed in O (n(3+ω)/2) � o(n2.687)

time (Theorem 3).

The new results on counting triangles in a graph may be of general interest and could be useful in other applications
unrelated to the main problem studied here.

1.2. Organization of the article

The article is organized as follows. Section 2 develops techniques for counting different types of colored triangles in an
edge-colored graph. Section 3 defines phylogenetic networks, the rooted triplet distance, and galled trees, and proves some
structural properties of galled trees. Next, in Section 4, we employ the triangle counting techniques from Section 2 to obtain
our main algorithm. Finally, Section 5 mentions some open problems.

2. Counting monochromatic and almost-monochromatic triangles in a graph

A triangle in an undirected graph is a cycle of length 3. Alon et al. [1] showed how to determine if a connected, undi-

rected graph with m edges contains a triangle, and if so, how to find a triangle in O (m
2ω

ω+1 ) � o(m1.408) time (Theorem 3.5
in [1]). They also showed how to count the number of triangles in an undirected graph with n vertices in O (nω) � o(n2.373)

time (Theorem 6.3 in [1]). We first improve their technique to count the number of triangles more efficiently in case the
input graph is sparse (m � n2):

Theorem 1. Let G be a connected, undirected graph with m edges. The number of triangles in G can be computed in O (m
2ω

ω+1 ) �
o(m1.408) time.

Proof. The proof is a minor modification of the proof of Theorem 3.5 in [1]. Define t = m
ω−1
ω+1 . The method differentiates

between two types of triangles, depending on t .
First, count the number of triangles in G whose three vertices all have degree at least t in G . To do this, take the

subgraph of G induced by all vertices of degree � t , and apply the triangle counting method from Theorem 6.3 in [1] which
runs in O (|V |ω) time for any graph with |V | vertices. Let N� be the computed number of triangles in the subgraph. Since

the number of vertices with degree � t is O (m
t ), the aforementioned method takes O (mω

tω ) = O (mω− (ω−1)ω
ω+1 ) = O (m

2ω
ω+1 )

time.
Secondly, count the triangles in G with at least one vertex of degree strictly less than t . For this purpose, let F be the set

of edges in G with at least one endpoint of degree < t . Enumerate the edges in F in any arbitrary order and let ei denote
the ith edge in this ordering. For i = 1, . . . , |F |, perform the following operations:

• Pick an endpoint v of edge ei in F with degree less than t . For each edge e incident to ei at v , check if ei and e induce
a triangle in G that does not include any edge e j ∈ F with j < i; if yes then increase N� by one.

The above steps can be implemented in O (t) time, so counting the remaining triangles takes O (mt) = O (m1+ ω−1
ω+1 ) =

O (m
2ω

ω+1 ) time.
Finally, return N� . �
Observe that Theorem 1 is faster than Theorem 6.3 in [1] when m = o(n

ω+1
2 ).

We can similarly refine the part of Theorem 1.8 in [24] which states that a monochromatic triangle in a connected,
undirected, edge-colored graph with n vertices can be found (if one exists) in O (n(3+ω)/2) � o(n2.687) time. We obtain:

Theorem 2. Let G be a connected, undirected, edge-colored graph with n vertices and let C be a subset of the set of edge colors. The
number of monochromatic triangles of G with colors in C can be computed in O (n(3+ω)/2) � o(n2.687) time.

Proof. For each color i ∈ C , let Ei be the set of edges in G colored by i. As in [24], say that i is heavily used if |Ei | �
n(ω+1)/2. For each heavily used color, we count the number of monochromatic triangles by directly applying the triangle
counting method from Theorem 6.3 in [1] to the subgraph induced by edges colored with i in O (nω) time. This takes
O (nω) · O (n2/n(ω+1)/2) = O (nω+2−(ω+1)/2) = O (n(3+ω)/2) time in total.

To count the remaining monochromatic triangles, for each non-heavily used color i ∈ C , we apply the method of Theo-
rem 1 above to the subgraph induced by the edges in Ei . This takes O (|Ei |2ω/(ω+1)) time. As in the proof of Theorem 1.8
in [24], the total time taken by all the non-heavily used colors is maximized if |Ei | = Θ(n(ω+1)/2) holds for each of

them and there are Θ(n2−(ω+1)/2) non-heavily used colors. Since O ((n(ω+1)/2)
2ω

ω+1 ) · O (n2−(ω+1)/2) = O (nω) · O (n(3−ω)/2) =
O (n(3+ω)/2), this shows that the total time to count all remaining monochromatic triangles is also O (n(3+ω)/2). �
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Next, we consider a kind of relaxation of the concept of a monochromatic triangle to an “almost-monochromatic triangle”
in an undirected, edge-colored graph G . Let R be a binary relation on the edge colors. A triangle in G with two edges of
the same color i and the third one of color k such that iRk holds is called an R-chromatic triangle (e.g., if R stands for <

then k is simply required to be larger than i). We need to extend Theorem 2 to count R-chromatic triangles. We begin with
a lemma whose role is analogous to Theorem 6.3 in [1].

Lemma 1. Let G be a connected, undirected, edge-colored graph with n vertices and let R be a binary relation on the edge colors of G
computable in constant time. For any edge color i, the number of R-chromatic triangles in G with at least two edges of color i can be
computed in O (nω) time.

Proof. Let Gi be the subgraph of G induced by the edges with color i. Build the adjacency matrix Ai of Gi and compute
the square Ci = (Ai)

2 in O (nω) time. For each entry Ci[k, l] with k < l, check if {k, l} is an edge of G whose color j is in the
relation R with the color i, i.e., if iR j holds. If so, increase the count of triangles by the value of Ci[k, l]; in case {k, l} is an
edge whose color is also i and iRi holds, increase the count of triangles by Ci[k, l]/3 only. �

Theorem 2 can now be generalized to R-chromatic triangles:

Theorem 3. Let G be a connected, undirected, edge-colored graph with n vertices, and let R be a binary relation on the edge colors of
G computable in constant time. The number of R-chromatic triangles in G can be computed in O (n(3+ω)/2) � o(n2.687) time.

Proof. For every edge color i, let Ei denote the set of edges of G having color i and let Gi be the subgraph of G induced
by Ei .

Proceed as in the proof of Theorem 2. First, for each heavily used color i, i.e., satisfying |Ei | � n(ω+1)/2, apply Lemma 1 to
count the number of R-chromatic triangles in G with at least two edges of color i. This takes O (nω+2−(ω+1)/2) = O (n(3+ω)/2)

time in total.
Then, every remaining R-chromatic triangle in G has at least two edges colored with a non-heavily used color. We now

explain how to count these triangles, too. Construct all the subgraphs Gi of G using O (n2) time in total. For each non-
heavily used color i, run the method of Theorem 1 with the following modifications that do not affect the asymptotic time
complexity:

1. In the first step, instead of counting the number in triangles in Gi whose three vertices all have degree at least t in Gi ,

where t = |Ei | ω−1
ω+1 , apply Lemma 1 to count the number of R-chromatic triangles in G with at least two edges of color i

and whose three vertices all have degree at least t in Gi .
2. In the second step, when scanning the edges e of Gi having at least one vertex v of degree less than t , for every edge

e′ of G incident to e at v , check if e and e′ induce an R-chromatic triangle in G that was not counted before and if so,
increase the count by one. This will count the R-chromatic triangles in G with at least two edges of color i and at least
one vertex of degree strictly less than t .

Thus, each non-heavily used color i requires O (|Ei |2ω/(ω+1)) time. By the same argument as in the proofs of Theo-
rem 1.8 in [24] and Theorem 2 above, we infer that the total time needed to count the remaining R-chromatic triangles is
O (n(3+ω)/2). �
3. Definitions and properties of phylogenetic networks

3.1. Basic definitions

A (rooted) phylogenetic network U is a directed acyclic graph with a single root vertex and a set of distinctly labeled
leaves, and no vertices having both indegree 1 and outdegree 1. Throughout the paper, we refer to the leaves in a phyloge-
netic network by their leaf labels. Also, we use the standard convention of drawing a phylogenetic network with the root at
the top and all edges oriented downwards. A vertex u is an ancestor of a vertex v (or, equivalently, v is a descendant of u)
in U if and only if there is a directed path from u to v in U . In particular, u is an ancestor and descendant of itself. If the
path from u to v has non-zero length then v is a proper descendant of u. Next, a vertex w is a common ancestor of vertices u
and v in U if and only if w is an ancestor of both u and v in U . Furthermore, w is a junction common ancestor (jca) of u
and v in U if and only if there are two directed paths from w to u and from w to v , respectively, which are vertex-disjoint
but for the start vertex w . Finally, w is a lowest common ancestor (lca) of u and v in U if and only if: (1) w is a common
ancestor of u and v; and (2) w has no proper descendant that is a common ancestor of u and v .

The definitions imply that any two vertices u and v in a phylogenetic network U have at least one lca in U and at least
one jca in U . In general, two vertices u and v in a phylogenetic network U may have more than one lca; for example, if w1
and w2 are two different parents of u and v in U then both of w1 and w2 are lca’s of u and v . (Lemma 2 below shows
that this is not possible for the restricted case of galled trees.) Also, if w is an lca of u and v in U then w is a jca of u
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and v in U . However, a jca of u and v in U is not necessarily an lca of u and v in U . As an example, in Fig. 2, vertices w
and z are two different jca’s of a and c, w is an lca of a and c, and z is not an lca of a and c.

Rooted triplet consistency in a phylogenetic network U is defined next, in accordance with the definition given in [14,15]
for rooted binary triplets. Let a, b, c be three leaf labels in U .

• The rooted binary triplet ab|c is consistent with U if and only if U contains a junction common ancestor w of a and b
as well as a junction common ancestor z of c and w such that there are four directed paths of non-zero length from w
to a, from w to b, from z to w , and from z to c that are vertex-disjoint except for in the vertices w and z.

• The rooted fan triplet a|b|c is consistent with U if and only if U contains a vertex w and three directed paths from w
to a, from w to b, and from w to c that are vertex-disjoint except for in the common start vertex w .

To illustrate, ab|c and bc|a are consistent with the network in Fig. 2. In Fig. 3, ab|c and a|b|c are consistent with the network
in (A), bc|a and a|b|c are consistent with the network in (B), and a|b|c is consistent with the network in (C).

Observe that whenever U is a tree, the concepts of a lowest common ancestor and a junction common ancestor between
two leaves coincide, and the definitions of rooted triplet consistency in a tree reduce to the definitions given in Section 1.

3.2. The rooted triplet distance

In this article, the rooted triplet distance between two phylogenetic networks is defined as:

Definition 1. Let U1, U2 be two phylogenetic networks on the same leaf label set L. The rooted triplet distance between U1
and U2, denoted by drt(U1, U2), is the number of rooted fan triplets and rooted binary triplets with leaf labels from L that
are consistent with exactly one of U1 and U2.

This is the canonical extension of drt suggested by Gambette and Huber [11] from the phylogenetic tree model to the
phylogenetic network model. We remark that this definition differs slightly from the one restricted to trees in [2,3,8,9],
which counts the number of “bad” cardinality-3 subsets L′ of L for which the rooted triplet with leaf set L′ consistent
with U1 differs from the rooted triplet with leaf set L′ consistent with U2. When dealing with phylogenetic networks, Def-
inition 1 may be more suitable than simply counting the number of bad cardinality-3 subsets of L because it distinguishes
between cases such as: (i) a|b|c and bc|a are consistent with U1 whereas only bc|a is consistent with U2; and (ii) a|b|c
is consistent with U1 and bc|a is consistent with U2. (Only a|b|c will contribute to drt(U1, U2) in case (i), but both a|b|c
and bc|a will contribute in case (ii).) One important feature of phylogenetic networks is their ability to induce more than
just one rooted triplet for any three given leaf labels, thereby making it possible for two networks to partially disagree on
three leaf labels, and Definition 1 takes this into account.

Also note that when restricted to trees, the value of drt in Definition 1 is exactly two times the value of drt from [2,3,8,9]
because every bad cardinality-3 subset will contribute twice to our drt (one time for the rooted triplet in U1 and one time
for the rooted triplet in U2) rather than once. Obviously, Definition 1 can be normalized by dividing it by two but then drt

will no longer always be an integer in the non-tree case.

3.3. Galled trees

Here, we recall the definition of the class of phylogenetic networks called the galled tree [12,14], and explore some of
its structural properties. This kind of phylogenetic network was first considered by Wang et al. [23] and later by Gusfield
et al. [12] and others (see, e.g., [14]).

A reticulation vertex in a phylogenetic network is any vertex of indegree greater than 1. For any phylogenetic network U ,
define its underlying undirected graph as the undirected graph obtained by replacing every directed edge in U by an undi-
rected edge. A cycle C in a phylogenetic network is any subgraph with at least three edges whose corresponding subgraph
in the underlying undirected graph is isomorphic to a cycle, and the vertex of C that is an ancestor of all vertices on C is
called the root of C . A phylogenetic network is called a galled tree if all of its cycles are vertex-disjoint [12,14]. Clearly, every
reticulation vertex in a galled tree must have indegree 2. Every cycle C in a galled tree has one root and one reticulation
vertex, and C consists of two directed, internally disjoint paths from its root to its reticulation vertex. Also, any directed
path from the root of the galled tree to a vertex on such a cycle passes through the root of the cycle.

Let U be a galled tree. From U , we can construct two trees U↘ and U↙ as follows. For each cycle C in U , arbitrarily
term one of the two edges on C incident to the reticulation vertex as a left reticulation edge and the other one as a right
reticulation edge. Let U↘ be the tree obtained from U by taking a copy of U and removing all right reticulation edges. Define
U↙ in the same way, but removing all left reticulation edges instead. Although U↘ and U↙ are not uniquely defined by U ,
for any such pair of resulting trees it holds that every reticulation edge of U occurs in exactly one U↘ and U↙ .

The next lemma summarizes some useful properties of galled trees:
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Lemma 2. Let U be a galled tree with n leaves and let u and v be any two vertices in U . Then:

1. There is exactly one lowest common ancestor of u and v in U .
2. There are at most two junction common ancestors of u and v in U .
3. If there are two junction common ancestors of u and v in U then both of them lie on the same cycle C in U . Furthermore, one of

them is the root of C and the other one is the lowest common ancestor of u and v in U .
4. The number of vertices in U as well as the number of edges in U is O (n).
5. All junction common ancestors of pairs of vertices in U can be listed in O (n2) time.

Proof.

1. Suppose, for the purpose of obtaining a contradiction, that there were two different lca’s w1 and w2 of u and v in U .
Consider any path from w1 to u in U and any path from w2 to u in U . Since both paths lead to u, they must meet
at some ancestor u′ of u which then has indegree larger than 1, where u′ is a proper descendant of w1 and also a
proper descendant of w2. Symmetrically, there exists an ancestor v ′ of v with indegree larger than 1 which is a proper
descendant of both w1 and w2, with u′ �= v ′ . Now let x be an lca of w1 and w2 in U . In the underlying undirected
graph of U , there is a cycle containing x and u′ and another cycle containing x and v ′ , i.e., two non-vertex-disjoint
cycles, contradicting the definition of a galled tree. Thus, property 1 holds.

2. Consider the two trees U↘ and U↙ defined above. First observe that every jca of u and v in U is an lca of u and v in
at least one of U↘ and U↙ . (To see this, let w be a jca of u and v in U . If w belongs to a cycle C then at most one of
the two disjoint paths from w to u and v can pass through the reticulation vertex on C ; therefore, w will still be a jca,
and hence an lca, of u and v in at least one of U↘ and U↙ . Otherwise, w does not belong to a cycle and then w is an
lca of u and v in both U↘ and U↙ .) Since u and v have exactly one lca in U↘ and exactly one lca in U↙ (possibly
the same vertex in U ), property 2 follows.

3. Suppose there are two different jca’s w1 and w2 of u and v in U . By the observation in the previous paragraph,
w1 and w2 are the lca’s of u and v in the two trees U↘ and U↙ . If w1 and w2 do not belong to the same cycle in U
then the lca of u and v in U↘ is the same vertex as the lca of u and v in U↙ , so w1 cannot be different from w2,
which is a contradiction. Hence, w1 and w2 must belong to the same cycle in U . Denote this cycle by C . If neither w1
nor w2 is the root of C then either w1 and w2 lie on the same path from the root of C to the reticulation vertex of C ,
or on different paths. The former case is impossible because it would imply that the two paths to u and v from the
uppermost jca (either w1 or w2) overlap, and the latter case is impossible because then w1 and w2 could not both be
jca’s. Thus, either w1 or w2 is the root of C . Next, according to the definitions, if w is an lca of u and v in U then w is
also a jca of u and v in U . There are at most two jca’s of u and v in U by property 2, so any such w must be equal to
either w1 or w2, which yields property 3.

4. To upper-bound the number of vertices in U , construct a binary galled tree U ′ (where every vertex has outdegree
at most 2) by repeatedly selecting any vertex w with outdegree larger than 2 and replacing any two of its outgoing
edges (w, c1) and (w, c2) by a single edge (w, x) and two edges (x, c1) and (x, c2) where x is a newly created vertex,
until no vertex with outdegree larger than 2 remains. This will not introduce any vertices having both indegree 1 and
outdegree 1, and U ′ is still a galled tree with n leaves, but U ′ contains at least as many vertices as U . According to
Lemma 3 in [7], the total number of vertices in any binary galled tree U ′ with n leaves is O (n), so this also gives an
upper bound for U . Furthermore, any vertex in a galled tree can have indegree at most 2 (otherwise, there would exist
two non-vertex-disjoint cycles in the underlying undirected graph), so the total number of edges in U is O (n).

5. Since the trees U↘ and U↙ can be preprocessed in linear time to answer ancestor or descendant queries as well as lca
queries in constant time [13], and lca’s in a tree are unique, property 5 follows. �

3.4. Characterizations of rooted triplet consistency in a galled tree

When restricted to galled trees, the definitions of consistency of a rooted binary triplet ab|c or a rooted fan triplet a|b|c
with a phylogenetic network can be expressed as in Lemmas 3 and 5 below. See Figs. 2 and 3 for some examples. These
two lemmas enable our main algorithm in Section 4 to count the number of rooted triplets shared by two galled trees.

We first characterize rooted binary triplet consistency.
For any galled tree U and two vertices u, v in U , a junction common ancestor z of u and v in U is said to rely on

another vertex w if, after the removal of w from U , the vertex z is no longer a junction common ancestor of u and v .

Lemma 3. Let U be a galled tree. For any three leaves a, b, c in the leaf label set of U , the rooted binary triplet ab|c is consistent with U
if and only if U contains a junction common ancestor w of a and b as well as a different junction common ancestor z of c and w such
that if both w and z belong to the same cycle C of U then at least one of them does not rely on the reticulation vertex of C .

Proof. The necessity of the condition stated in the lemma follows directly from the definition of consistency of ab|c with U .
It remains to show the sufficiency.
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Fig. 2. Illustrating Lemma 3. w is a jca of a and b that does not rely on the reticulation vertex, and z is a jca of c and w , so Lemma 3 gives us the rooted
binary triplet ab|c. Note that Lemma 3 also correctly identifies bc|a.

Fig. 3. Illustrating Lemma 5. In each of the diagrams, U is a (partially depicted) galled tree. In (A), a|b|c is of type 1 and the conditions in Lemma 5-1 (i)

hold with w �= lcaU↙
(a, c) = lcaU↙

(b, c). In (B), a|b|c is of type 1 and Lemma 5-1 (ii) holds with w �= lcaU (b, c) = lcaU↘
(b, c). In (C), a|b|c is of type 2 and

Lemma 5-2 holds. In addition to the above, Lemma 3 also identifies ab|c in (A) and bc|a in (B).

The proof is by contradiction. First of all, the path from z to w crosses neither the path from w to a nor the path from w
to b since U is an acyclic directed graph. Next, if the path from z to c would cross the one from w to a (or the one from w
to b) in an inner vertex x then z and w would lie on a common cycle whose reticulation vertex is x, and both would rely
on x. We obtain a contradiction. �

The rest of this subsection deals with rooted fan triplet consistency.
Suppose that a|b|c is a rooted fan triplet that is consistent with a galled tree U . By definition, U contains a vertex w

and three directed, internally vertex-disjoint paths from w to each of the leaves a, b, and c. There can only be one such
vertex w in U (otherwise, there would be two non-vertex-disjoint cycles in U ’s underlying undirected graph, contradicting
the definition of a galled tree), and we call w the root of a|b|c in U .

Lemma 4. Suppose that a|b|c is a rooted fan triplet that is consistent with a galled tree U . Then a|b|c is consistent with at least one
of U↘ and U↙ .

Proof. Let w be the root of a|b|c in U and let Pa , Pb , and Pc be any three directed, internally vertex-disjoint paths in U
from w to a, from w to b, and from w to c, respectively.

For any cycle C in U , the reticulation vertex of C is reachable from its root in both U↘ and U↙ . Also, any subpath
in U starting at a vertex on C that is not the root of C and ending at the reticulation vertex of C is present in exactly one
of U↘ and U↙ . Therefore, if it holds for each cycle in U that at most one of Pa , Pb , and Pc contains edges from that cycle,
then a, b, and c will still be reachable by internally vertex-disjoint paths from w in at least one of the two trees. Otherwise,
some cycle C in U overlaps with two of Pa , Pb , and Pc , and then w must be the root of C ; noting that at most one of
the left and the right reticulation edges of C can be contained in Pa , Pb , and Pc (otherwise two paths would overlap in
C ’s reticulation vertex, which contradicts them being internally vertex-disjoint), we deduce that a reticulation edge of C not
contained in any of Pa , Pb , and Pc can be removed without affecting the reachability of C ’s reticulation vertex from w , i.e.,
a, b, and c are reachable by internally vertex-disjoint paths from w in at least one of U↘ and U↙ . This shows that a|b|c is
consistent with at least one of the two trees. �

It will be convenient to partition the rooted fan triplets in any galled tree U into two types based on Lemma 4. Let a|b|c
be a rooted fan triplet consistent with U . If a|b|c is consistent with exactly one of the two trees U ↘ and U↙ then a|b|c is
said to be of type 1 in U ; otherwise, by Lemma 4, a|b|c must be consistent with both of U↘ and U↙ and we say that a|b|c
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is of type 2 in U . For example, a|b|c in Fig. 3 (A) is of type 1 and a|b|c in Fig. 3 (B) is also of type 1. On the other hand,
a|b|c in Fig. 3 (C) is of type 2.

The next (somewhat technical) lemma characterizes the occurrences of rooted fan triplets of type 1 and type 2 in U in
terms of relations between lowest common ancestors in U , U↘ , and U↙ . By Lemma 2, any pair of vertices u, v in a galled
tree U has a unique lowest common ancestor, which will be denoted by lcaU (u, v). Similarly, for any tree T and vertices u,
v in T , lcaT (u, v) is the unique lowest common ancestor of u and v in T .

Lemma 5. Let a, b, c be three leaf labels in a galled tree U . It holds that:

1. The rooted fan triplet a|b|c is consistent with U and a|b|c is of type 1 in U if and only if either:
(i) lcaU (a,b) = lcaU (a, c) = lcaU (b, c) = w for some vertex w, w is equal to all of lca(a,b), lca(a, c), and lca(b, c) in one of U↘
and U↙ , and w is equal to exactly one of lca(a,b), lca(a, c), and lca(b, c) in the other; or

(ii) For two (x, y) among {(a,b), (a, c), (b, c)}, it holds that lcaU (x, y) = lcaU↘
(x, y) = lcaU↙

(x, y) = w for some vertex w, and
for the third pair (x, y), there exists a proper descendant v of w in U such that v = lcaU (x, y) and v = lca(x, y) in exactly one
of U↘ and U↙ while w = lca(x, y) in the other.

2. The rooted fan triplet a|b|c is consistent with U and a|b|c is of type 2 in U if and only if lcaU↘
(a,b) = lcaU↙

(a,b) = lcaU↘
(a, c) =

lcaU↙
(a, c) = lcaU↘

(b, c) = lcaU↙
(b, c).

Proof. ⇒) Suppose that a|b|c is consistent with U and let w be the root of a|b|c in U . Let Pa , Pb , and Pc be any three
directed, internally vertex-disjoint paths in U from w to a, from w to b, and from w to c. A case analysis reveals that the
following distinct cases are possible:

1. w does not lie on a cycle: Then the three paths in U↘ from w to a, b, and c (not necessarily the same as Pa ,
Pb , and Pc) are internally vertex-disjoint, i.e., w is still a jca of all pairs of leaves in {a,b, c} in U↘ , and a|b|c is
consistent with U↘ . The argument can be repeated for U↙ so a|b|c is also consistent with U↙ . Furthermore, we have

w = lcaU (a,b) = lcaU↘
(a,b) = lcaU↙

(a,b) = lcaU (a, c) = lcaU↘
(a, c) = lcaU↙

(a, c) = lcaU (b, c) = lcaU↘
(b, c) = lcaU↙

(b, c).
2. w lies on a cycle C but is not the root of C : Then at most one Pa , Pb , and Pc (say Pc) contains edges from C . Thus,

w = lcaU (a,b) = lcaU↘
(a,b) = lcaU↙

(a,b) = lcaU (a, c) = lcaU (b, c). There are two subcases:
(a) If Pc contains no reticulation edges of C then a|b|c is consistent with both U↘ and U↙ as in case 1, and

w = lcaU↘
(a, c) = lcaU↙

(a, c) = lcaU↘
(b, c) = lcaU↙

(b, c).
(b) Otherwise, Pc contains exactly one reticulation edge of C (see Fig. 3 (A) for an example where this occurs). If it

is the left one then a|b|c is consistent with U↘ but not U↙ , and lcaU↘
(a, c) = lcaU↘

(b, c) = w and lcaU↙
(a, c) =

lcaU↙
(b, c) = r, where r is the root of C . If it is the right one then a|b|c is consistent with U↙ but not U↘ , and

lcaU↘
(a, c) = lcaU↘

(b, c) = r and lcaU↙
(a, c) = lcaU↙

(b, c) = w .
3. w is the root of a cycle C : At most two of the three paths Pa , Pb , and Pc can contain edges from C because U is

a galled tree. Assume without loss of generality that Pa does not contain any edges from C . Then no path from w
to a can intersect Pb or Pc except for in the starting vertex w , so lcaU (a,b) = lcaU (a, c) = w must hold and also

lcaU↘
(a,b) = lcaU↙

(a,b) = lcaU↘
(a, c) = lcaU↙

(a, c) = w . There are two subcases:
(a) If lcaU (b, c) = w (see Fig. 3 (C) for an example where this occurs) then since w is the root of C , w = lcaU↘

(b, c) =
lcaU↙

(b, c) and a|b|c is consistent with both of U↘ and U↙ .
(b) Otherwise, lcaU (b, c) = v for some vertex v on C with v �= w (see Fig. 3 (B) for an example where this occurs).

Exactly one of b and c (say c) is a descendant of C ’s reticulation vertex, so the subpath of Pc starting at w and
ending at C ’s reticulation vertex exists in exactly one of U↘ and U↙ . It follows that a|b|c is consistent with one

of U↘ and U↙ , and one of lcaU↘
(b, c) and lcaU↙

(b, c) is equal to v while the other one is equal to w .

Now, we see that a|b|c is of type 1 in U if and only if case 2 (b) or case 3 (b) occurs, and a|b|c is of type 2 in U if and only
if case 1, case 2 (a), or case 3 (a) occurs. Furthermore, condition 1 (i) in the lemma statement is equivalent to case 2 (b),
and condition 1 (ii) is equivalent to case 3 (b).

⇐) The rooted fan triplet a|b|c is consistent with U↘ if and only if lcaU↘
(a,b) = lcaU↘

(a, c) = lcaU↘
(b, c), and analogously

for U↙ . Therefore, if either condition 1 (i) or condition 1 (ii) in the lemma statement is true then a|b|c is consistent

with exactly one of U↘ and U↙ , i.e., a|b|c is of type 1 in U , and if lcaU↘
(a,b) = lcaU↙

(a,b) = lcaU↘
(a, c) = lcaU↙

(a, c) =
lcaU↘

(b, c) = lcaU↙
(b, c) then a|b|c is of type 2 in U . �

4. Computing the rooted triplet distance between galled trees

In this section, we apply the triangle counting techniques from Section 2 to obtain a subcubic-time algorithm for com-
puting the rooted triplet distance between two galled trees U1 and U2 with the same set L of leaf labels. We first explain
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how to compute the number of rooted fan triplets consistent with both networks in Section 4.1 and then the number of
rooted binary triplets consistent with both networks in Section 4.2. Combining these two results gives us our main result
(Theorem 4) in Section 4.3.

4.1. Counting the number of shared rooted fan triplets

To count the number of rooted fan triplets consistent with both of the two galled trees U1 and U2, we apply Theorems 2
and 3 from Section 2 as detailed below. As a warm-up, we first present a simple reduction from the problem of counting
rooted fan triplets shared by two trees to the problem of counting monochromatic triangles in a graph.

Lemma 6. Let T1 and T2 be two phylogenetic trees with the same set L of n leaf labels. The number of rooted fan triplets consistent
with both T1 and T2 can be computed in O (n(3+ω)/2)� o(n2.687) time.

Proof. Create an auxiliary undirected, edge-colored, complete graph G = (L, E) in which every edge is assigned a color of
the form (v1, v2), where v1 is a vertex of T1 and v2 is a vertex of T2, as follows.

• For each edge {u, v} ∈ E: Let x1 be the lca of u and v in T1, let x2 be the lca of u and v in T2, and color the edge {u, v}
in G with the color (x1, x2).

The key observation is that for any three leaf labels a,b, c in L, the rooted fan triplet a|b|c is consistent with T1 if and
only if the lca’s in T1 of a and b, of a and c, and of b and c are identical. The same holds for T2. Therefore, a|b|c is consistent
with both T1 and T2 if and only if all three edges {a,b}, {a, c}, {b, c} have the same color in G . It follows that the number
of rooted fan triplets common to both trees equals the number of monochromatic triangles in G .

By Lemma 2, G can be constructed in O (n2) time. By Theorem 2, we can compute the number of rooted fan triplets that
are consistent with both T1 and T2 in O (n(3+ω)/2) time. �

Next, we address the more complicated galled tree case.
Recall from Sections 3.3 and 3.4 that U↘ and U↙ are two trees obtained from a galled tree U by removing edges

incident to the reticulation vertices, and that every rooted fan triplet in U is partitioned into one of two types depending
on if it is consistent with one or two of U↘ and U↙ . For p,q ∈ {1,2}, let T p,q denote the number of rooted fan triplets
consistent with both U1 and U2 that are of type p in U1 and of type q in U2. Our next goal is to compute the sum
T1,1 + T1,2 + T2,1 + T2,2, which equals the number of rooted fan triplets consistent with both U1 and U2.

First, construct the four trees U↘
1 , U↙

1 , U↘
2 , and U↙

2 defined in Section 3.3 in O (n) time. Then, Lemma 7 below accom-
plishes our goal by computing T1,1 + 2T1,2 + 2T2,1 + 4T2,2 and subtracting multiples of T1,2, T2,1, and T2,2.

Proposition 1. The sum T1,1 + 2T1,2 + 2T2,1 + 4T2,2 can be computed in O (n(3+ω)/2) time.

Proof. For i ∈ {1,2}, each rooted fan triplet of type 1 in Ui is consistent with one of U↘
i and U↙

i , while each rooted fan

triplet of type 2 in Ui is consistent with both of them. If we sum the number of rooted fan triplets shared between U↘
1

and U↘
2 , between U↘

1 and U↙
2 , between U↙

1 and U↘
2 , and between U↙

1 and U↙
2 then every rooted fan triplet consistent

with U1 and U2 that is of type 1 in both U1 and U2 is counted once, while any shared rooted fan triplet that is of different
types in U1 and U2 is counted twice, and any shared rooted fan triplet of type 2 in both U1 and U2 is counted four times.
Hence, the computed sum equals T1,1 + 2T1,2 + 2T2,1 + 4T2,2.

Using Lemma 6, we can find the number of shared rooted fan triplets between U↘
1 and U↘

2 , between U↘
1 and U↙

2 ,

between U↙
1 and U↘

2 , and between U↙
1 and U↙

2 in O (n(3+ω)/2) time. �
Proposition 2. The value of T2,2 can be computed in O (n(3+ω)/2) time.

Proof. We adapt the idea used in the proof of Lemma 6. As before, create an auxiliary complete graph G = (L, E), but now
assign the edge colors in G as follows.

• For each edge {u, v} ∈ E: For i ∈ {1,2}, let yi be the lca of u and v in U↘
i and zi the lca of u and v in U↙

i . If y1 = z1
and y2 = z2 then color {u, v} with the color (y1, y2); otherwise, color {u, v} with a null color that never occurs again
in G .

According to Lemma 5-2, any three leaf labels a,b, c in a galled tree U form a rooted fan triplet of type 2 in U if and

only if lcaU↘
(a,b) = lcaU↙

(a,b) = lcaU↘
(a, c) = lcaU↙

(a, c) = lcaU↘
(b, c) = lcaU↙

(b, c). Hence, by applying Theorem 2 to
count the number of monochromatic triangles in G , we get the number of shared rooted fan triplets that are of type 2 in
both U1 and U2 in O (n(3+ω)/2) time. �
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Fig. 4. In the proof of Proposition 3, the edges in the auxiliary graph G are colored so that any three vertices a,b, c form an R-chromatic triangle if and
only if a|b|c is consistent with both U1 and U2 and is of type 1 in U1 and of type 2 in U2. (A) occurs when U1 satisfies the conditions in Lemma 5-1 (i),
(B) occurs when U1 satisfies the conditions in Lemma 5-1 (ii), and (C) occurs when U2 satisfies the conditions in Lemma 5-2.

Proposition 3. The values of T1,2 and T2,1 can be computed in O (n(3+ω)/2) time.

Proof. To compute T1,2, we again use the idea from the proof of Lemma 6. Create an auxiliary undirected, complete
graph G = (L, E) and color each edge {u, v} ∈ E as described next. Recall from Lemma 2 that lca’s in a galled tree are
unique.

• Let x1 be the lca of u and v in U1, let y2 be the lca of u and v in U↘
2 , and let z2 be the lca of u and v in U↙

2 . If x1 is

the lca of u and v in both of U↘
1 and U↙

1 while y2 = z2 then {u, v} is colored with (x1, y2). On the other hand, if x1 is

the lca of u and v in exactly one of U↘
1 and U↙

1 while y2 = z2 then {u, v} is colored with (x ∗
1 , y2). Otherwise, {u, v}

is colored with a null color that never occurs again in G .

Here, colors containing an asterisk symbol are used to indicate that the lca in U1 of two leaves in L is also the lca in one
of, but not both of, U↘

1 and U↙
1 . Lemma 5-1 implies that a|b|c is a rooted fan triplet of type 1 in U1 if and only if either:

(i) two of the three edges {a,b}, {a, c}, and {b, c} in G are assigned a color of the form (w ∗, . . .) while the third one is
assigned a color of the form (w, . . .), as in Fig. 4 (A); or

(ii) two of them are assigned a color of the form (w, . . .) and the third one a color of the form (v ∗, . . .), where v is a
proper descendant of w , as in Fig. 4 (B).

Moreover, by Lemma 5-2, a|b|c is a rooted fan triplet of type 2 in U2 if and only if lcaU↘
2 (a,b) = lcaU↙

2 (a,b) = lcaU↘
2 (a, c) =

lcaU↙
2 (a, c) = lcaU↘

2 (b, c) = lcaU↙
2 (b, c), i.e., if all of the three edges {a,b}, {a, c}, and {b, c} have a color of the form (. . . , w),

as in Fig. 4 (C).
Thus, if we define a binary relation R on the edge colors of G by:

• (i1, i2)R(k1,k2) holds if and only if: (i) either i1 = k ∗
1 or k1 = j ∗ , where j is a proper descendant of i1; and (ii) i2 = k2.

Then the number of R-chromatic triangles in G equals T1,2.
The four trees U↘

1 , U↙
1 , U↘

2 , and U↙
2 can be preprocessed in O (n) time to support O (1)-time lca queries [13], and we

can spend O (n2) time to build a data structure supporting O (1)-time proper descendant queries for U1. After that, we can
apply Theorem 3 to G to obtain T1,2 in O (n(3+ω)/2) time.

The value of T2,1 can be computed in O (n(3+ω)/2) time in the same way. �
By combining Propositions 1, 2, and 3, the sum T1,1 + T1,2 + T2,1 + T2,2 can be computed in O (n(3+ω)/2) � o(n2.687)

time, which yields the next lemma.

Lemma 7. Let U1 and U2 be two galled trees with the same set of n leaf labels. The number of rooted fan triplets consistent with
both U1 and U2 can be computed in O (n(3+ω)/2) � o(n2.687) time.

4.2. Counting the number of shared rooted binary triplets

Let U1 and U2 be two galled trees with the same set L of leaf labels. This subsection describes how to compute the
number of rooted binary triplets consistent with both U1 and U2.

First, for every pair of leaf labels in L × L, compute their junction common ancestors in U1 as well as in U2. For each
such jca, store information about if it is located on a cycle and if so, whether it is the root of the cycle and whether it relies
on the reticulation vertex of the cycle. By applying Lemma 2, this can be done in O (n2) time.
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Next, partition the set of pairs of distinct leaf labels from L into classes according to their jca’s in U1 and U2 as follows.
Define the class C

v
f1
1 , v

f2
2

, where vi is a vertex in Ui for i ∈ {1,2} and f1, f2 ∈ {0,1}, so that any pair (a,b) ∈ L × L with

a �= b belongs to C
v

f1
1 , v

f2
2

if and only if the following three conditions hold for both i ∈ {1,2}:

1. vi is a jca of a and b in Ui ;
2. f i = 1 if and only if vi is located on a cycle of Ui and vi relies on the reticulation vertex of the cycle; and
3. if vi is the root of a cycle in Ui then there is no other jca of a and b in Ui .

For example, if U1 is the galled tree in Fig. 3 (B) and w1 denotes the vertex labeled w in this figure, and U2 is the galled
tree in Fig. 3 (C) and w2 denotes its vertex labeled w , then we have (a,b) ∈ C w0

1, w0
2
, (a, c) ∈ C w1

1, w0
2
, and (b, c) ∈ Cv1, w0

2
.

The third condition in the definition is needed to ensure that the resulting classes are disjoint. According to Lemma 2,
any pair of leaves a and b in a galled tree has at most two jca’s. Moreover, if there are two such jca’s v and w then they
are located on the same cycle and one of them (say w) will be the root of the cycle. Since any path from an ancestor of w
ending at w can be extended to reach v , from the point of view of a rooted binary triplet ab|c, it is sufficient to consider
the jca v which is not the root of the cycle. By obeying condition 3, (a,b) will only be placed in some class whose index
involves v and not in any class whose index involves w . We obtain the following proposition.

Proposition 4. The classes C
v

f1
1 , v

f2
2

are disjoint. They can be constructed in O (n2) time by integer sorting.

Next, construct two binary matrices M1 and M2 from U1 and U2, respectively. For i ∈ {1,2}, Mi contains two rows for
each vertex v in Ui (indexed by v0 and v1, and ordered so that row v0 precedes row v1) and n columns corresponding to
the leaf labels in L. Define the matrix entries according to:

• Mi[v0, c] = 1 if and only if there exists a jca w in Ui of v and the leaf c such that v �= w .
• Mi[v1, c] = 1 if and only if v belongs to a cycle in Ui and there exists a jca w in Ui of v and the leaf c such that v �= w

and w does not rely on the reticulation vertex of the cycle that v belongs to.

Observe that Mi[v1, c] = 1 implies Mi[v0, c] = 1. Also observe that:

Proposition 5. For every c ∈ L, if some matrix entry Mi[v fi
i , c] = 1 then c cannot occur in any leaf label pair belonging to a class of

the form C
v

f1
1 , v

f2
2

.

Proof. Let a be any leaf label in L with a �= c and let C
v

f1
1 , v

f2
2

be the class that contains the pair (a, c). By definition, there

are two paths in U1 from v1 to a and from v1 to c that are vertex-disjoint except for in the common start vertex v1. There
are two cases:

1. f1 = 0: Then either (i) v1 does not lie on a cycle, or (ii) v1 lies on a cycle and does not rely on the cycle’s reticulation
vertex. In both (i) and (ii), there is no jca w in U1 of v1 and c with w �= v1, so M1[v0

1, c] = 0.
2. f1 = 1: Then v1 lies on a cycle and relies on the reticulation vertex of the cycle, which means that exactly one of a

and c is a descendant of the reticulation vertex. If it is a then there exists no jca w in U1 of v1 and c with w �= v1; if it
is c then the root of the cycle is a jca w of v1 and c with w �= v1, but both v1 and w rely on the cycle’s reticulation
vertex. Thus, M1[v1

1, c] = 0.

Analogous arguments hold for U2. Therefore, Mi[v fi
i , c] = 0 for i ∈ {1,2}. �

In the next step, compute the matrix product Q = M1 × Mt
2 in O (nω) time. From the definitions of M1 and M2, we have:

Proposition 6. Each entry Q [v f1
1 , v f2

2 ] equals the number of leaf labels in L having a junction common ancestor with v1 in U1 not
equal to v1 as well as a junction common ancestor with v2 in U2 not equal to v2 that, furthermore, do not rely on the reticulation
vertex of the cycle which vi lies on if f i = 1 for i ∈ {1,2}.

Now, consider any specified vertex v1 in U1, vertex v2 in U2, and f1, f2 ∈ {0,1}. Suppose that c ∈ L is a leaf label that
contributes to the value of Q [v f1

1 , v f2
2 ] in Proposition 6, i.e., M1[v f1

1 , c] = M2[v f2
2 , c] = 1, and that (a,b) is a pair in C

v
f1
1 , v

f2
2

.

(According to Proposition 5, c does not occur in any pair belonging to C
v

f1
1 , v

f2
2

.) For each i ∈ {1,2}, if vi lies on a cycle in Ui

and f i = 0 then vi does not rely on the reticulation vertex of this cycle by the definition of C
v

f1
1 , v

f2
2

; if vi lies on a cycle

in Ui and f i = 1 then the jca of vi and c does not rely on the reticulation vertex by the definition of Mi[v1, c]. It follows
i
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Fig. 5. An example given in Fig. 5 in [11]. The two rooted triplets ab|c and bc|a are consistent with each of the three non-isomorphic galled trees shown
above. Note that there is one cycle of length 4 in each network.

from Lemma 3 that the rooted binary triplet ab|c is consistent with both U1 and U2. Also, for { f1, f2} �= { f ′
1, f ′

2}, it holds
by Proposition 4 that C

v
f1
1 , v

f2
2

∩ C
v

f ′1
1 , v

f ′2
2

= ∅. Thus, the sum

∑

f1, f2∈{0,1}
|C

v
f1
1 , v

f2
2

| · Q
[
v f1

1 , v f2
2

]

equals the number of rooted binary triplets of the form ab|c consistent with both U1 and U2 that use vi as a jca of a and b
in Ui for i ∈ {1,2}, with the exception of the case where v1 or v2 is the root of a cycle and there is another jca of a and b
that is a descendant of this vertex. Given the C

v
f1
1 , v

f2
2

-classes and Q , it suffices to compute the sum

∑

v1∈U1

∑

v2∈U2

∑

f1, f2∈{0,1}
|C

v
f1
1 , v

f2
2

| · Q
[
v f1

1 , v f2
2

]

to obtain the total number of rooted binary triplets consistent with both U1 and U2, which takes O (n2) time.
In summary, we have shown the following lemma:

Lemma 8. Let U1 and U2 be two galled trees with the same set of n leaf labels. The number of rooted binary triplets consistent with
both U1 and U2 can be computed in O (nω) � o(n2.373) time.

4.3. Computing the rooted triplet distance

By combining the results in the previous two subsections, we obtain:

Theorem 4. Let U1 and U2 be two galled trees with the same set of n leaf labels. The rooted triplet distance drt(U1, U2) can be
computed in O (n(3+ω)/2) � o(n2.687) time.

Proof. For i ∈ {1,2}, let Fi be the set of rooted fan triplets consistent with Ui , and let Bi be the set of rooted binary triplets
consistent with Ui . We have drt(U1, U2) = ∑2

i=1(|Fi | + |Bi |) − 2|F1 ∩ F2| − 2|B1 ∩ B2|. Compute |Fi ∩ Fi | = |Fi | and |F1 ∩ F2|
in O (n(3+ω)/2) � o(n2.687) time using Lemma 7, and compute |Bi ∩ Bi | = |Bi | and |B1 ∩ B2| in O (nω) � o(n2.373) time using
Lemma 8. �
5. Concluding remarks

We have demonstrated that the rooted triplet distance can be computed in subcubic time for a well-known class of
phylogenetic networks called galled trees [12,14]. More precisely, we have presented a new o(n2.687)-time algorithm for
computing the rooted triplet distance between two input galled trees with n leaves each and identical leaf label sets (Theo-
rem 4). We have also derived three results on counting triangles in a graph (Theorems 1–3) that may have other applications.
The first two triangle counting results are generalizations of their known (weaker) detection counterparts from [1] and [24],
respectively.

Some criteria for when a phylogenetic network is uniquely defined by a set of rooted triplets were established by Gam-
bette and Huber in [11]. Significantly, Corollary 1 in [11] states that if U is a binary galled tree (i.e., a galled tree whose
vertices have outdegree at most 2 and whose reticulation vertices have indegree 2 and outdegree 1) containing b cycles of
length 4, then there are 3b non-isomorphic binary galled trees that are consistent with the same set of rooted triplets as U .
Fig. 5 shows an example from [11]. Since two non-isomorphic galled trees U1, U2 may satisfy drt(U1, U2) = 0, it immedi-
ately follows that the rooted triplet distance is not a metric for the class of galled trees. However, Corollary 2 in [11] shows
that drt is a metric for the subclass of binary galled trees that do not have any cycles of length 4.

An alternative extension of the rooted triplet distance from phylogenetic trees to phylogenetic networks was proposed
by Cardona et al. in [4]. It works for the class of tree-child time consistent phylogenetic networks [4]. For each cardinality-3
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subset L′ of the leaf label set, instead of looking at the rooted binary triplets or rooted fan triplets over L′ in the two
networks, it considers the subnetworks induced by the so-called least common semistrict ancestors of the leaves in L′;
consequently, “rooted triplets” of different types than rooted binary triplets and rooted fan triplets are possible. This leads
to an O (n5)-time, breadth-first-search-based algorithm [4]. Although Cardona et al.’s [4] extension of the rooted triplet
distance is more involved than Gambette and Huber’s [11] canonical extension studied in this paper (Definition 1) and is
still not a metric for the class of galled trees (see Fig. 19 in [4]), it has some other nice mathematical properties. It might
be beneficial to examine the relationship between the two alternatives and try to speed up the O (n5)-time algorithm of [4]
by using fast triangle counting or matrix multiplication techniques.

Nielsen et al. [20] showed how to compute the unrooted quartet distance between two unrooted phylogenetic trees with
n leaves in o(n2.687) time. Interestingly, they also rely on matrix multiplication. Their method does not count triangles in
an auxiliary graph as we have done here, but uses matrix multiplication to count so-called shared and different butterflies
between the two input trees directly. In some sense, their problem may be inherently “easier” than ours as it does not
involve cycles. Indeed, much of the conceptual complexity in Section 4 above stems from the non-uniqueness of junction
common ancestors in galled trees; for example, it is more complicated to prove Lemma 7 than Lemma 6 because of this
issue.

Finally, we list some open problems.

1. Does the problem of computing the rooted triplet distance drt(U1, U2) between two galled trees U1, U2 admit a
quadratic-time algorithm or not?

2. Can our method be extended to even larger classes of phylogenetic networks than the galled trees? For example, can
it be extended to level-k phylogenetic networks [7,14] for any positive integer k? As shown in [21], the class of galled
trees forms a subset of the class of level-1 phylogenetic networks, with equality occurring when restricted to networks
whose vertices have outdegree at most 2 and whose reticulation vertices have indegree 2 and outdegree 1.

3. From a practical point of view, an experimental analysis based on real data or simulations would be useful to validate
the rooted triplet distance as a means to compare phylogenetic networks. In particular, how well does the rooted triplet
distance capture the notion of dissimilarity between galled trees in practice?
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