
An Efficient Algorithm for the Rooted Triplet
Distance Between Galled Trees

Jesper Jansson1,2, Ramesh Rajaby3,4, and Wing-Kin Sung3,5(B)

1 Laboratory of Mathematical Bioinformatics, ICR,
Kyoto University, Gokasho, Uji, kyoto 611-0011, Japan

jj@kuicr.kyoto-u.ac.jp
2 Department of Computing, The Hong Kong Polytechnic University,

Hung Hom, Kowloon, Hong Kong, China
3 School of Computing, National University of Singapore,

13 Computing Drive, Singapore 117417, Singapore
e0011356@u.nus.edu, ksung@comp.nus.edu.sg

4 NUS Graduate School for Integrative Sciences and Engineering,
National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore

5 Genome Institute of Singapore, 60 Biopolis Street, Genome,
Singapore 138672, Singapore

Abstract. The previously fastest algorithm for computing the rooted
triplet distance between two input galled trees (i.e., phylogenetic net-
works whose cycles are vertex-disjoint) runs in O(n2.687) time, where n
is the cardinality of the leaf label set. Here, we present an O(n logn)-time
solution. Our strategy is to transform the input so that the answer can
be obtained by applying an existing O(n logn)-time algorithm for the
simpler case of two phylogenetic trees a constant number of times.

Keywords: Phylogenetic network comparison · Galled tree · Rooted
triplet · Algorithm · Computational complexity

1 Introduction

Measuring the similarity between phylogenetic trees is essential for evaluating
the accuracy of methods for phylogenetic reconstruction [11]. The rooted triplet
distance [5] between two rooted phylogenetic trees having the same leaf label
sets is given by the number of phylogenetic trees of size three that are embedded
subtrees in either one of the input trees, but not the other. Since two phylogenetic
trees with a lot of branching structure in common will typically share many such
subtrees, the rooted triplet distance provides a natural measure of how dissimilar
the two trees are.

A naive algorithm can compute the rooted triplet distance between two input
rooted phylogenetic trees in O(n3) time, where n is the cardinality of the leaf
label set, by directly checking each of the

(
n
3

)
different cardinality-3 subsets of

the leaf label set. More involved algorithms have been developed [1,2,4,10], and
the asymptotically fastest one [2] solves the problem in O(n log n) time.
c© Springer International Publishing AG 2017
D. Figueiredo et al. (Eds.): AlCoB 2017, LNBI 10252, pp. 115–126, 2017.
DOI: 10.1007/978-3-319-58163-7 8

116 J. Jansson et al.

Gambette and Huber [6] extended the rooted triplet distance from the phy-
logenetic tree setting to the phylogenetic network setting. In a phylogenetic
network [8,12], internal nodes are allowed to have more than one parent. Phylo-
genetic networks enable scientists to represent more complex evolutionary rela-
tionships than phylogenetic trees, e.g., involving horizontal gene transfer events,
or to visualize conflicting branching structure among a collection of two or more
phylogenetic trees. The special case of a phylogenetic network in which all under-
lying cycles are vertex-disjoint is called a galled tree [7,8,13]. Galled trees may
be sufficient in cases where a phylogenetic tree is not good enough but it is
known that only a few reticulation events have happened; see Fig. 9.22 in [8] for
a biological example. For a summary of other distances for comparing two galled
trees (the Robinson-Foulds distance, the tripartitions distance, the μ-distance,
the split nodal distance, etc.), see [3].

The fastest known algorithm for computing the rooted triplet distance
between two galled trees relies on triangle counting and runs in O(n2.687) time [9].
More precisely, its time complexity is O(n(3+ω)/2), where ω is the exponent in
the running time of the fastest existing method for matrix multiplication. Since
ω < 2 is impossible, the running time for computing the rooted triplet distance
between two galled trees using the algorithm from [9] will never be better than
O(n2.5). In this paper, we present an algorithm for the case of galled trees that
does not use triangle counting but instead transforms the input to an appro-
priately defined set of phylogenetic trees to which the O(n log n)-time algorithm
of [2] is applied a constant number of times. Basically, in any galled tree, remov-
ing one of the two edges leading to an indegree-2 vertex in every cycle yields a
tree which still contains most of the branching information, and we show how
to compensate for what is lost by doing so while avoiding double-counting. The
resulting time complexity of our new algorithm is O(n log n).

The paper is organized as follows. Section 2 defines the problem formally,
Sect. 3 presents the algorithm and its analysis, and Sect. 4 contains some con-
cluding remarks.

2 Problem Definitions

We recall the following definitions from [9].
A (rooted) phylogenetic tree is an unordered, rooted tree in which every inter-

nal node has at least two children and all leaves are distinctly labeled. A (rooted)
phylogenetic network is a directed acyclic graph with a single root vertex and a
set of distinctly labeled leaves, and no vertices having both indegree 1 and outde-
gree 1. A reticulation vertex in a phylogenetic network is any vertex of indegree
greater than 1. For any phylogenetic network N , define its underlying undirected
graph as the undirected graph obtained by replacing every directed edge in N by
an undirected edge. A cycle C in a phylogenetic network is any subgraph with
at least three edges whose corresponding subgraph in the underlying undirected
graph is isomorphic to a cycle, and the vertex of C that is an ancestor of all
vertices on C is called the root of C. A phylogenetic network is called a galled

The Rooted Triplet Distance Between Galled Trees 117

tree if all of its cycles are vertex-disjoint [7,8,13]. Note that every reticulation
vertex in a galled tree must have indegree 2. Every cycle C in a galled tree (also
called a gall) has exactly one root (also referred to as its split vertex) and one
reticulation vertex, and C consists of two directed, internally disjoint paths from
its split vertex to its reticulation vertex.

A phylogenetic tree with exactly three leaves is called a rooted triplet. A
rooted triplet leaf-labeled by {a, b, c} with one internal node is called a fan
triplet and is denoted by a|b|c, while a rooted triplet leaf-labeled by {a, b, c}
with two internal nodes is called a resolved triplet ; in the latter case, there are
three possible topologies, denoted by ab|c, ac|b, and bc|a, corresponding to when
the lowest common ancestor of the two leaves labeled by a and b, or a and c, or b
and c, respectively, is a proper descendant of the root. Let a, b, c be three leaf
labels in a phylogenetic network N . The fan triplet a|b|c is consistent with N if
and only if N contains a vertex v and three directed paths from v to a, from v
to b, and from v to c that are vertex-disjoint except for in the common start
vertex v. Similarly, the resolved triplet ab|c is consistent with N if and only
if N contains two vertices v and w (v �= w) such that there are four directed
paths of non-zero length from v to a, from v to b, from w to v, and from w to c
that are vertex-disjoint except for in the vertices v and w. For any phylogenetic
network N , t(N) denotes the set of all rooted triplets (i.e., fan triplets as well
as resolved triplets) that are consistent with N .

Definition 1 (Adapted from [6]). Let N1, N2 be two phylogenetic networks on
the same leaf label set L. The rooted triplet distance between N1 and N2, denoted
by drt(N1, N2), is the number of fan triplets and resolved triplets with leaf labels
from L that are consistent with exactly one of N1 and N2.

(See also Sect. 3.2 in [9] for a discussion of the above definition.) Define
fcount(N1, N2) as the number of fan triplets consistent with both N1 and N2,
rcount(N1, N2) as the number of resolved triplets consistent with both N1 and
N2, and count(N1, N2) = fcount(N1, N2) + rcount(N1, N2). Note that for i ∈
{1, 2}, we have |t(Ni)| = count(Ni, Ni). Then one can compute drt(N1, N2) by
the formula drt(N1, N2) = count(N1, N1) + count(N2, N2) − 2 · count(N1, N2).
The following result was shown by Brodal et al. in [2]:

Theorem 2. [2] If T1, T2 are two phylogenetic trees on the same leaf label set L
then fcount(T1, T2) and rcount(T1, T2) (and hence, drt(T1, T2)) can be computed
in O(n log n) time, where n = |L|.

From now on, we assume that the input consists of two galled trees N1 and N2

over a leaf label set L and that the objective is to compute drt(N1, N2). We define
n = |L|. It is known that drt(N1, N2) can be computed in O(n2.687) time [9].
Below, we show how to do it faster by using Theorem 2, which yields our main
result:

Theorem 3. If N1, N2 are two galled trees on the same leaf label set L then
fcount(N1, N2) and rcount(N1, N2) (and hence, drt(N1, N2)) can be computed
in O(n log n) time, where n = |L|.

118 J. Jansson et al.

3 The New Algorithm

Section 3.1 describes how to compute rcount(N1, N2) efficiently, while Sect. 3.2
is focused on fcount(N1, N2). (Both subsections rely on Theorem2.) In addition
to the definitions provided in Sect. 2, the following notation and terminology will
be needed.

Suppose that N is a galled tree. For each internal vertex in N , fix some
arbitrarily left-to-right ordering of its children. Then N↘ is the tree obtained by
removing the right parent edge of every reticulation vertex in N and contracting
every edge (if any) leading to a vertex with exactly one child. Similarly, N↙ is
the tree formed by removing the left parent edge of every reticulation vertex in N
and contracting all edges leading to degree-1 vertices. Let N↓ be the tree formed
by removing both the left and right parent edges of the reticulation vertex h
in each gall, inserting a new edge between the gall’s split vertex and h, and
contracting all edges leading to degree-1 vertices.

Let r(N) denote the root of N and let gall(N) be the set of all galls in N . For
each Q ∈ gall(N), let r(Q) be the root of Q and hQ the reticulation vertex of Q.
Let QL and QR be the left and right paths of Q, obtained by removing r(Q),
hQ, and all edges incident to r(Q) and hQ. A rooted triplet in t(N) with leaf
label set {x, y, z} is called ambiguous if N contains a gall Q such that:

1. x, y, z are in three different subtrees attached to Q or r(Q);
2. exactly one leaf is in the subtree attached to hQ; and
3. at least one leaf is in a subtree attached to QL or QR.

The ambiguous triplets are partitioned into type-A, type-B, and type-C triplets,
defined as follows (see Fig. 1 for an illustration):

Fig. 1. (a), (b) and (c) illustrate the definitions of type-A, type-B, and type-C triplets,
respectively.

The Rooted Triplet Distance Between Galled Trees 119

• {x, y, z} is a type-A triplet of N if there exists a gall Q in N such that two
leaves in {x, y, z} appear in two different subtrees attached to the same Qδ

(δ = L or R) while the remaining leaf appears in the subtree rooted at hQ.
Furthermore, if {x, y, z} is a type-A triplet of N and {x, y, z} are attached to
a gall Q in N with z appearing in the subtree rooted at hQ then {x, y, z} is
called a type-A triplet of N with reticulation leaf z.

• {x, y, z} is a type-B triplet of N if there exists a gall Q in N such that, among
the three leaves in {x, y, z}, one leaf is attached to r(Q) but is not in Q,
another leaf appears in a subtree attached to QL (or QR) and the last leaf
appears in the subtree rooted at hQ.

• {x, y, z} is a type-C triplet of N if there exists a gall Q in N such that, among
the three leaves in {x, y, z}, one leaf appears in a subtree attached to QL,
another leaf appears in a subtree attached to QR, and the last leaf appears
in the subtree rooted at hQ.

3.1 Counting Common Resolved Triplets in N1 and N2

The main idea of our algorithm for computing rcount(N1, N2) is to count the
common resolved triplets between N1 and each of the three trees N↙

2 , N↘
2 ,

and N↓
2 and then combine the results appropriately. However, there is one type

of triplet which we miss by doing so, depending on the position of its leaves
within the gall containing its lowest common ancestor. This case corresponds
to the type-A ambiguous triplets and we count these triplets separately with
an extra function rcountA (see Lemma 5 below). The problem of counting the
common resolved triplets between N1 and a tree is similarly reduced to three
instances of counting the common resolved triplets between two phylogenetic
trees (covered by Theorem 2) and adjusting the result by using rcountA.

We now present the details. Define rcountA(N1, N2) as the number of
resolved triplets xy|z in both N1 and N2 such that {x, y, z} is a type-A triplet
of N2 with reticulation leaf z. Similarly, define rcount∗A(N1, N2) as the num-
ber of resolved triplets xy|z in both N1 and N2 such that {x, y, z} is a type-A
triplet of both N1 and N2 with reticulation leaf z. Observe that in general,
rcountA(N1, N2) �= rcountA(N2, N1), but rcount∗A(N1, N2) = rcount∗A(N2, N1)
always holds.

The following lemmas express the relationships between rcount(N1, N2),
rcountA(N1, N2), and rcount∗A(N1, N2).

Lemma 4. Suppose that xy|z is a resolved triplet such that x, y, z are in the
leaf label set. Then rcount(xy|z,N2) = rcount(xy|z,N↙

2)+ rcount(xy|z,N↘
2)−

rcount(xy|z,N↓
2) + rcountA(xy|z,N2).

Proof. Any resolved triplet xy|z either appears or does not appear in t(N2).
Also, any ambiguous triplet is either of type-A, type-B, or type-C. Hence, we
have the following cases.

120 J. Jansson et al.

– (1) xy|z �∈ t(N2).
– (2) xy|z ∈ t(N2):

• (2.1) xy|z ∈ t(N2) and {x, y, z} is not ambiguous.
• (2.2) xy|z ∈ t(N2) and {x, y, z} is a type-A triplet with reticulation leaf

z in N2.
• (2.3) xy|z ∈ t(N2) and {x, y, z} is a type-A triplet with reticulation leaf

x or y in N2.
• (2.4) xy|z ∈ t(N2) and {x, y, z} is a type-B or type-C triplet.

In case (1), xy|z �∈ t(N↙
2), t(N↘

2), t(N↓
2). Also, rcountA(xy|z,N2) = 0 since

it cannot be a type-A triplet. Hence, rcount(xy|z,N↙
2) + rcount(xy|z,N↘

2) −
rcount(xy|z,N↓

2) + rcountA(xy|z,N2) = 0.
In case (2.1), since xy|z ∈ t(N2) and {x, y, z} is not ambiguous, xy|z ∈

t(N↙
2), t(N↘

2), t(N↓
2). Also, rcountA(xy|z,N2) = 0. Hence, rcount(xy|z,N↙

2) +
rcount(xy|z,N↘

2) − rcount(xy|z,N↓
2) + rcountA(xy|z,N2) = 1.

In case (2.2), xy|z appears in either N↙
2 or N↘

2 , but not both, and in N↓
2 .

Because we have rcountA(xy|z,N2) = 1 by definition, rcount(xy|z,N↙
2) +

rcount(xy|z,N↘
2) − rcount(xy|z,N↓

2) + rcountA(xy|z,N2) = 1.
Finally, in cases (2.3) and (2.4), xy|z appears in either N↙

2 or N↘
2 , but not

both, and xy|z does not appear in N↓
2 . Also, rcountA(xy|z,N2) = 0 by definition.

Thus, rcount(xy|z,N↙
2) + rcount(xy|z,N↘

2) − rcount(xy|z,N↓
2) = 1. ��

Lemma 5. rcount(N1, N2) = rcount(N1, N
↙
2) + rcount(N1, N

↘
2)−rcount(N1,

N↓
2) + rcountA(N1, N2).

Proof. Write rcount(N1, N2) =
∑

xy|z∈N1
rcount(xy|z,N2). For xy|z ∈ t(N1), by

Lemma 4, we have rcount(xy|z,N2) = rcount(xy|z,N↙
2) + rcount(xy|z,N↘

2) −
rcount(xy|z,N↓

2) + rcountA(xy|z,N2). ��

Lemma 6. rcountA(N1, N2) = rcountA(N↙
1 , N2) + rcountA(N↘

1 , N2) −
rcountA(N↓

1 , N2) + rcount∗A(N1, N2).

Proof. For xy|z ∈ t(N1), by an argument identical to the one in the proof of
Lemma 4, we have rcount(N1, xy|z) = rcount(N↙

1 , xy|z) + rcount(N↘
1 , xy|z) −

rcount(N↓
1 , xy|z) + rcount′A(N1, xy|z), where rcount′A(N1, xy|z) = 1 if {x, y, z}

is a type-A triplet of N1 with reticulation leaf z, and rcount′A(N1, xy|z) = 0
otherwise.

Let W = {xy|z : {x, y, z} is a type-A triplet of N2 with reticulation leaf z}.
Then rcountA(N1, N2) =

∑
xy|z∈W rcount(N1, xy|z) =

∑
xy|z∈W (rcount(N↙

1 ,

xy|z) + rcount(N↘
1 , xy|z) − rcount(N↓

1 , xy|z) + rcount′A(N1, xy|z)) =
rcountA(N↙

1 , N2)+rcountA(N↘
1 , N2)−rcountA(N↓

1 , N2)+rcount∗A(N1, N2) ��
Next, we discuss the computation of rcountA(T1, N2) and rcount∗A(N1, N2),

where N1 and N2 are galled trees and T1 is a phylogenetic tree. (The case of
rcountA(N1, T2) where N1 is a galled tree and T2 is a tree, needed in Lemma 5,

The Rooted Triplet Distance Between Galled Trees 121

Fig. 2. (a) shows a galled tree N , (b) shows NL, and (c) shows NLL.

is symmetric.) For δ ∈ {L,R}, denote by τδ the tree formed by attaching all
subtrees attached to Qδ to a common root. For any galled tree N , let NL be a
tree formed from N↘ by contracting all edges on QL for every gall Q (observe
that the edges (r(Q), r(τL)) and (r(τL), hQ) are in NL). Define NLL to be a tree
formed from N↓ by replacing all the trees attached to QL with τL, inserting a
new vertex mQ between r(Q) and hQ, and replacing the edge (r(Q), r(τL)) with
(mQ, r(τL)). See Fig. 2 for an example. NR and NRR are defined analogously.

Lemma 7. For δ ∈ {L,R}, the following two properties hold.

• All resolved triplets in N δ are in N δδ.
• All additional resolved triplets xy|z in N δδ, i.e., those not in N δ, are type-A

triplets of N with reticulation leaf z.

Proof. Consider any three leaves {x, y, z}. If zero, one, or all three of them belong
to τδ then N δ|{x, y, z} = N δδ|{x, y, z}, where N |W is the galled subtree of N
formed by retaining only leaves in W . Otherwise, when two of {x, y, z} belong
to τδ, let γ be the lowest common ancestor of x, y, z in N δδ. There are two cases:

1. If γ is a proper ancestor of mQ, then N δ|{x, y, z} = N δδ|{x, y, z} = xy|z.
2. Otherwise, γ = mQ and then N δ|{x, y, z} = x|y|z while N δδ|{x, y, z} = xy|z.

Hence, all resolved triplets in N δ are in N δδ.
Finally, xy|z is a type-A triplet of N with reticulation leaf z if and only if

γ = mQ. This shows that the second property also holds. ��
Lemma 8. rcountA(T1, N2) =

∑

δ∈{L,R}

(
rcount(T1, N

δδ
2) − rcount(T1, N

δ
2)

)
.

Proof. By Lemma 7, all type-A triplets in N2 appear in N δδ
2 but not in N δ

2 for
some δ ∈ {L,R}. The lemma follows. ��

122 J. Jansson et al.

Lemma 9. rcount∗A(N1, N2) =
∑

δ∈{L,R}

(
rcountA(N δδ

1 , N2) − rcountA(N δ
1 , N2)

)
.

Proof. (Similar to the proof of Lemma8.) By Lemma 7, all type-A triplets in N1

appear in N δδ
1 but not in N δ

1 for some δ ∈ {L,R}. ��
The algorithm in Fig. 3 computes rcount(N1, N2) using Lemmas 5, 6, 8, and 9.

Fig. 3. The algorithm for computing rcount(N1, N2).

Lemma 10. The algorithm rcount(N1, N2) in Fig. 3 makes a total of 37 calls
to rcount(T1, T2), where T1 and T2 are phylogenetic trees.

Proof. First, rcountA(T1, N2) is obtained by making 4 calls to rcount(T1, T2),
and rcount∗A(N1, N2) by 4 calls to rcountA(T1, T2). Next, rcountA(N1, N2) is
obtained by 3 calls to rcountA(T1, N2) and 1 call to rcount∗A(N1, N2). In total,
rcountA(N1, N2) uses 3 · 4 + 4 = 16 calls to rcount(T1, T2).

Similarly, rcount(N1, T2) is obtained by 3 calls to rcount(T1, T2) and 1 call
to rcountA(T2, N1). In total, rcount(N1, T2) can be computed by 3 · 1 + 4 = 7
calls to rcount(T1, T2).

Finally, rcount(N1, N2) is obtained by 3 calls to rcount(N1, T2) and 1 call
to rcountA(N1, N2). In total, rcount(N1, N2) uses 3 · 7 + 16 = 37 calls to
rcount(T1, T2). ��

By Theorem 2, rcount(T1, T2) can be computed in O(n log n) time for any
two trees T1, T2. Lemma 10 shows that the algorithm in Fig. 3 makes a constant
number of calls to rcount(T1, T2). Lastly, constructing each of the constant num-
ber of trees used as arguments to rcount(T1, T2) (N↙

1 , N↓
1 , etc.) takes O(n) time.

Thus, the total running time to obtain rcount(N1, N2) is O(n log n).

The Rooted Triplet Distance Between Galled Trees 123

3.2 Counting Common Fan Triplets in N1 and N2

To compute fcount(N1, N2), we modify the technique from the previous subsec-
tion. The main difference is that we count type-B and type-C triplets separately.
(Some proofs have been omitted from the conference version of the paper.)

Define fcountBC(N1, N2) as the number of triplets {x, y, z} such that x|y|z
is a fan triplet in N1 and {x, y, z} is a type-B or type-C triplet in N2. Also,
define fcount∗BC(N1, N2) as the number of type-B and type-C triplets {x, y, z}
that appear in both N1 and N2. Similar to what was done in Sect. 3.1 where
rcount(N1, N2) was expressed using rcountA(N1, N2) and rcount∗A(N1, N2), we
express fcount(N1, N2) using fcountBC(N1, N2) and fcount∗BC(N1, N2).

Lemma 11. Let x|y|z be a fan triplet. Then fcount(x|y|z,N2) = fcount(x|y|z,

N↙
2) + fcount(x|y|z,N↘

2) − fcount(x|y|z,N↓
2) + fcountBC(x|y|z,N2) = 0.

Lemma 12. fcount(N1, N2) = fcount(N1, N
↙
2) + fcount(N1, N

↘
2) − fcount

(N1, N
↓
2) + fcountBC(N1, N2).

Lemma 13. fcountBC(N1, N2) = fcountBC(N↙
1 , N2) + fcountBC(N↘

1 , N2) −
fcountBC(N1, N

↓
2) + fcount∗BC(N1, N2).

The rest of this subsection considers how to compute fcountBC(T1, N2) and
fcount∗BC(N1, N2) efficiently. A caterpillar is a binary phylogenetic tree in which
every internal node has at least one leaf child. Given a galled tree N , we define
NB as the tree formed by performing the following three steps on a copy of N :

• Replace every degree-k vertex which is not a split vertex in N by a length-k
caterpillar.

• For every gall Q, if the split vertex r(Q) is of degree k > 2, for all k−2 children
of r(Q) which are not on the gall, replace them by a length-(k−2) caterpillar
and attach it r(Q). Furthermore, creating a new vertex u and attach the roots
of QL and QR to u and attach u to r(Q).

• Remove the reticulation vertex hQ’s two parent edges and attach hQ and its
subtrees to r(Q).

Also, we define NC as a tree obtained by performing the following three steps
on a copy of N :

• Replace every degree-k vertex which is not a split vertex in N by a length-k
caterpillar.

• For every gall Q, if the split vertex r(Q) is of degree k > 2, for all k − 2
children of r(Q) which are not on the gall, replace them by a length-(k − 2)
caterpillar and attach it to a new vertex between r(Q) and its parent.

• Remove the reticulation vertex hQ’s two parent edges and attach hQ and its
subtrees to r(Q).

Figure 4 gives an example illustrating how to construct NB and NC from N .
The next lemma states how N , NB , and NC are related.

124 J. Jansson et al.

Fig. 4. (a) is an example of a galled tree N , (b) is NB , and (c) is NC .

Lemma 14. (1) {x, y, z} is a type-B triplet in N if and only if x|y|z is a fan
triplet in NB; (2) {x, y, z} is a type-C triplet in N if and only if x|y|z is a fan
triplet in NC .

Proof. By construction, every vertex in NB and NC has 2 or 3 children. Any ver-
tex in NB and NC with 3 children corresponds to a split vertex of a gall in N .

For (1): (→) If {x, y, z} is a type-B triplet in N , there exists a gall Q in N
such that x, y, z are in three different subtrees attached to Q where one leaf (say,
x) is in a subtree attached to QL or QR, another leaf (say, y) is in a subtree
attached to r(Q) and the remaining leaf (say, z) is in a subtree attached to hQ.
Then, in NB , by construction, x|y|z is a fan triplet in NB .

(←) If x|y|z is a fan triplet in NB , let u be the lowest common ancestor
of x, y, z in NB . u is of degree-3 and it corresponds to a gall Q. This implies,
x, y, z are in a subtree attached to r(Q), a subtree attached to hQ and a subtree
attached to QL or QR. Hence, {x, y, z} is a type-B triplet in N .

For (2): (→) If {x, y, z} is a type-C triplet in N , there exists a gall Q in N
such that x, y, z are in three different subtrees attached to Q. Where one leaf
(say, x) is in a subtree attached to QL, another leaf (say, y) is in a subtree
attached to QR, and the remaining leaf (say, z) is in a subtree attached to hQ.
Then, in NC , by construction, x|y|z is a fan triplet in NB .

(←) If x|y|z is a fan triplet in NB , let u be the lowest common ancestor
of x, y, z in NB . u is of degree-3 and it corresponds to a gall Q. This implies,
x, y, z are in a subtree attached to QL, a subtree attached to QR and a subtree
attached to hQ. Hence, {x, y, z} is a type-C triplet in N . ��

We have the following two lemmas.

Lemma 15. fcountBC(T1, N2) = fcount(T1, N
B
2) + fcount(T1, N

C
2).

Lemma 16. fcount∗BC(N1, N2) = fcount(NB
1 , NB

2) + fcount(NC
1 , NC

2).

The algorithm in Fig. 5 computes fcount(N1, N2) by combining Lemmas 12,
13, 15, and 16.

The Rooted Triplet Distance Between Galled Trees 125

Fig. 5. The algorithm for computing fcount(N1, N2).

Lemma 17. The algorithm fcount(N1, N2) in Fig. 5 makes a total of 23 calls
to fcount(T1, T2), where T1 and T2 are phylogenetic trees.

Proof. Note that fcountBC(T1, N2) is computed by 2 calls to fcount(T1, T2), and
fcount∗BC(N1, N2) by 2 calls to fcountA(T1, T2). Moreover, fcountBC(N1, N2)
makes 3 calls to fcountBC(T1, N2) and 1 call to fcount∗BC(N1, N2). In total,
fcountBC(N1, N2) uses 3 · 2 + 2 = 8 calls to fcount(T1, T2).

In the same way, fcount(N1, T2) makes 3 calls to fcount(T1, T2) and 1 call
to fcountBC(T2, N1). In total, fcount(N1, T2) is obtained from 3 ·1+2 = 5 calls
to fcount(T1, T2).

Finally, fcount(N1, N2) is obtained from 3 calls to fcount(N1, T2) and 1 call
to rcountBC(N1, N2). In total, fcount(N1, N2) makes 3 · 5 + 8 = 23 calls to
fcount(T1, T2). ��

Since fcount(T1, T2) can be computed in O(n log n) time for any two trees
T1, T2 by Theorem 2, fcount(T1, T2) is called a constant number of times accord-
ing to Lemma 17, and constructing each of the constant number of trees used
as arguments to fcount(T1, T2) takes O(n) time, the algorithm in Fig. 5 runs in
O(n log n) time.

4 Concluding Remarks

The presented algorithm requires a subroutine for computing the rooted triplet
distance between two phylogenetic trees. If a faster algorithm for the case of trees
than the one referred to in Theorem2 is discovered (e.g., running in O(n log log n)
time), this would immediately imply a faster algorithm for the case of galled trees
as well. As an alternative, the algorithm in [10] was shown experimentally to be
faster for reasonably sized inputs; hence its usage may be preferred in a practical
setting.

126 J. Jansson et al.

Possible future work is to implement the new algorithm and evaluate its per-
formance in practice. Although the number of calls to the subroutine for com-
puting the rooted triplet distance between trees is constant, the constant is quite
large (37 + 23 = 60). Is it possible to reduce this number? An implementation
of the new algorithm would benefit considerably by doing so.

An open problem is to determine whether the techniques used here can be
extended to compute the rooted triplet distance between more general phyloge-
netic networks than galled trees.

Acknowledgments. J.J. was partially funded by The Hakubi Project at Kyoto
University and KAKENHI grant number 26330014.

References

1. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially
resolved trees. Theor. Comput. Sci. 412(48), 6634–6652 (2011)

2. Brodal, G.S., Fagerberg, R., Mailund, T., Pedersen, C.N.S., Sand, A.: Efficient
algorithms for computing the triplet and quartet distance between trees of arbitrary
degree. In: Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2013), pp. 1814–1832. SIAM (2013)

3. Cardona, G., Llabrés, M., Rosselló, R., Valiente, G.: Comparison of galled trees.
IEEE/ACM Trans. Comput. Biol. Bioinf. 8(2), 410–427 (2011)

4. Critchlow, D.E., Pearl, D.K., Qian, C.: The triples distance for rooted bifurcating
phylogenetic trees. Syst. Biol. 45(3), 323–334 (1996)

5. Dobson, A.J.: Comparing the shapes of trees. In: Street, A.P., Wallis, W.D. (eds.)
Combinatorial Mathematics III. LNM, vol. 452, pp. 95–100. Springer, Heidelberg
(1975). doi:10.1007/BFb0069548

6. Gambette, P., Huber, K.T.: On encodings of phylogenetic networks of bounded
level. J. Math. Biol. 65(1), 157–180 (2012)

7. Gusfield, D., Eddhu, S., Langley, C.: Optimal, efficient reconstruction of phylo-
genetic networks with constrained recombination. J. Bioinf. Comput. Biol. 2(1),
173–213 (2004)

8. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts Algo-
rithms and Applications. Cambridge University Press, Cambridge (2010)

9. Jansson, J., Lingas, A.: Computing the rooted triplet distance between galled trees
by counting triangles. J. Discrete Algorithms 25, 66–78 (2014)

10. Jansson, J., Rajaby, R.: A more practical algorithm for the rooted triplet distance.
J. Comput. Biol. 24(2), 106–126 (2017)

11. Kuhner, M.K., Felsenstein, J.: A simulation comparison of phylogeny algorithms
under equal and unequal evolutionary rates. Mol. Biol. Evol. 11(3), 459–468 (1994)

12. Morrison, D.: Introduction to Phylogenetic Networks. RJR Productions (2011)
13. Wang, L., Ma, B., Li, M.: Fixed topology alignment with recombination. Discrete

Appl. Math. 104(1–3), 281–300 (2000)

http://dx.doi.org/10.1007/BFb0069548

	An Efficient Algorithm for the Rooted Triplet Distance Between Galled Trees
	1 Introduction
	2 Problem Definitions
	3 The New Algorithm
	3.1 Counting Common Resolved Triplets in N1 and N2
	3.2 Counting Common Fan Triplets in N1 and N2

	4 Concluding Remarks
	References

