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ABSTRACT

The rooted triplet distance is a measure of the dissimilarity of two phylogenetic trees with
identical leaf label sets. An algorithm by Brodal et al. that computes it in O(n log n) time and
O(n log n) space, where n is the number of leaf labels, has recently been implemented in the
software package tqDist. In this article, we show that replacing the hierarchical decompo-
sition tree used in Brodal et al.’s algorithm by a centroid paths-based data structure yields
an O(n log3 n)-time and O(n log n)-space algorithm that, although slower in theory, is faster
in practice as well as less memory consuming. Simulations for values of n up to 4,000,000
support our claims experimentally.

Keywords: phylogenetic tree comparison, centroid path decomposition tree, implementation,

rooted triplet distance.

1. INTRODUCTION

Evolutionary relationships between biological species or natural languages are often represented in

treelike structures known as phylogenetic trees (or phylogenies) (Felsenstein, 2004; Nakhleh et al.,

2005; Sung, 2010). Over the years, many alternative methods for inferring phylogenetic trees have been

developed; see, for example, Felsenstein (2004). Owing to errors in experimentally obtained data or the

inherent instability of classifications, applying the same tree inference method to different data sets for a set

of species or changing the assumed model of evolution may result in trees whose leaf label sets are the same

but whose branching patterns are different. In this case, to identify parts of the trees that look alike or to

reconcile all the trees into a single tree, methods for measuring the similarity between phylogenetic trees are

needed. Measuring the similarity between two phylogenetic trees may also be useful for supporting queries in

phylogenetic databases in the future (Bansal et al., 2011) or for evaluating the performance of a newly

proposed tree inference method by doing simulations and comparing the inferred trees to the corresponding

known correct trees.
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Several measures of the (dis-)similarity of two phylogenetic trees with identical leaf label sets have been

suggested in the literature (Bansal et al., 2011). One such measure is the rooted triplet distance (Dobson,

1975), which counts how many of the subtrees induced by cardinality-3 subsets of the leaves that differ

between the two trees. This article presents a practical algorithm for computing the rooted triplet distance,

based on the framework introduced in an algorithm by Brodal et al. (2013), along with its implementation.

1.1. Basic definitions

Let T be a rooted tree. The degree of a node u in T is the number of children of u, and the degree of T is

the maximum of the degrees of all nodes in T. In this article, a phylogenetic tree is a rooted, unordered tree

whose leaves are distinctly labeled and whose internal nodes have degree at least 2. From here on,

phylogenetic trees are referred to as ‘‘trees’’ for short.

The set of all nodes and the set of all leaf labels in a tree T are denoted by V(T) and L(T), respectively.

For any u 2 V(T), T(u) is the subtree of T rooted at u, that is, the subgraph of T induced by the node u and

all of its proper descendants in T. For any l 2 L(T), T(l) is the leaf in T with leaf label l. For any

u‚ v 2 V(T), lcaT (u‚ v) is the lowest common ancestor (lca) in T of u and v. Also, for any u‚ v 2 V(T), if u is

a proper descendant of v, then we write u � v.

A rooted triplet is a tree with exactly three leaves. Suppose t is a rooted triplet with leaf label set

L(t) = fa‚ b; cg. There are two possibilities. If t has a single internal node, then t is called a fan triplet and is

denoted by ajbjc. Observe that in this case, t is a nonbinary tree and lcat(a‚ b) = lcat(a‚ c) = lcat(b‚ c) holds.

Otherwise, t has two internal nodes and is a binary tree; in this case, t is called a resolved triplet and is

denoted by xyjz, where fx‚ y‚ zg = fa‚ b; cg and lcat(x‚ y) � lcat(x‚ z) = lcat(y‚ z). For any tree T and

fa‚ b; cg � L(T), the fan triplet ajbjc is said to be consistent with T if lcaT (a‚ b) = lcaT (a‚ c) = lcaT (b‚ c).

Similarly, the resolved triplet abjc is consistent with T if lcaT (a‚ b) � lcaT (a‚ c) = lcaT (b; c). Let rt(T) be the

set of all rooted triplets consistent with the tree T. By definition, jrt(T)j = jL(T)j
3

� �
.

For any two trees T1‚ T2 with L(T1) =L(T2), the rooted triplet distance drt(T1‚ T2) is defined as

drt(T1‚ T2) =
jrt(T1)Drt(T2)j

2
;

where D stands for the symmetric difference between two sets. In other words, drt(T1‚ T2) equals the

number of cardinality-3 subsets of the leaf label set that give rise to a conflict in the branching patterns

of T1 and T2. See Figure 1 for an example. Intuitively, the rooted triplet distance considers two trees

that share many small embedded subtrees to be similar. Note that dividing drt(T1‚ T2) by n
3

� �
, where

n = jL(T1)j = jL(T2)j, yields a dissimilarity coefficient between 0 and 1 that may be more informative than

drt in some applications.

Henceforth, we consider the problem of computing drt(T1‚ T2) for two input trees T1‚ T2 with identical

leaf label sets. To simplify the notation, we write L =L(T1) ( =L(T2)) and n = jLj for the given trees.

1.2. Previous results and related work

The rooted triplet distance was proposed by Dobson (1975). Given two trees T1‚ T2 with identical leaf

label sets, drt(T1‚ T2) can be computed in O(n3) time by a straightforward algorithm. Critchlow et al. (1996)

gave an O(n2)-time algorithm for the special case where T1 and T2 are binary, and Bansal et al. (2011)

showed how to compute drt(T1‚ T2) in O(n2) time for two trees of arbitrary degrees. Recently, Brodal et al.

(2013) achieved a time complexity of O(n log n) for two trees of arbitrary degrees.

An implementation of Brodal et al.’s (2013) fast algorithm, written in C++, is available in the free

software package tqDist (Sand et al., 2014). The rooted triplet distance can also be computed in an older

FIG. 1. An example. Here, rt(T1) = fabjc‚

abjd‚ cdja‚ cdjbg and rt(T2) = fbcja‚ bdja‚

cdja‚ bjcjdg, so drt(T1‚ T2) = 3.
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software package named EPoS (Griebel et al., 2008), but because EPoS is much slower than tqDist and

typically runs out of memory for trees with n >10‚ 000, it will not be included in the experimental

evaluation hereunder.

As for other related work, the counterpart of the rooted triplet distance for unrooted trees is the unrooted

quartet distance (Estabrook et al., 1985). The currently fastest algorithm for computing the unrooted

quartet distance (Brodal et al., 2013) runs in O(dn log n) time, where n is the number of leaf labels and d is

the maximum number of neighbors of any node in the two input trees. An extension of the rooted triplet

distance to phylogenetic networks was introduced in Gambette and Huber (2012) and further studied in

Jansson and Lingas (2014); for two galled trees (Gusfield et al., 2004) (phylogenetic networks whose cycles

are disjoint) with n leaves each, the rooted triplet distance can be computed in o(n2:687) time ( Jansson and

Lingas, 2014).

1.3. Our contributions

We present some nontrivial modifications to Brodal et al.’s (2013) algorithm for computing drt(T1‚ T2)

for two trees of arbitrary degrees that make it more efficient in practice. The theoretical time complexity of

the resulting algorithm is O(n log3 n), which is slightly worse than that of the original version, but we show

experimentally that a direct C++ implementation of the new algorithm gives a faster and more memory-

efficient method than tqDist (Sand et al., 2014), the publicly available implementation of Brodal et al.’s

algorithm, for various types of large inputs consisting of two trees with up to 4 million leaves each.

The article is organized as follows. Brodal et al.’s (2013) algorithm is reviewed in Section 2. Section 3

describes the new algorithm, Section 4 discusses implementation issues, and Section 5 presents the ex-

perimental results. Finally, Section 6 contains some concluding remarks.

2. SUMMARY OF BRODAL ET AL.’S ALGORITHM

On a high level, the algorithm of Brodal et al. (2013) works as follows. Each rooted triplet t in rt(T1) is

implicitly assigned to the lca in T1 of the three leaves in L(t). For each internal node u in T1, the algorithm

counts how many of its assigned rooted triplets also appear in rt(T2) by first coloring the leaves of T2 in

such a way that two leaves receive the same color if and only if their corresponding leaves in T1 are

descendants of the same child of u in T1, and then finding the number of elements in rt(T2) compatible with

this coloring.

A naive implementation of this idea leads to a quadratic time complexity. As demonstrated in Brodal

et al. (2013), the time complexity can be reduced to O(n log n) by employing two special tools. The first one

is a data structure called a hierarchical decomposition tree (HDT) that represents T2 so that the number of

rooted triplets in rt(T2) compatible with a given leaf coloring of T2 can be retrieved quickly. How to

construct the HDT, augment it with auxiliary information to support the relevant queries, and update this

information when the leaves of T2 are recolored are somewhat complicated and will not be described here;

see Brodal et al. (2013) for details. The second tool is a recursive recoloring scheme that visits the nodes of

T1 systematically to generate all the required leaf colorings of T2 while avoiding unnecessary recoloring

operations. The recoloring scheme will be needed in Section 3 hereunder, so the rest of this section explains

how it works.

Let fC0‚ C1‚ . . . ‚ Cdg be a set of colors, where d is the degree of T1. In the recoloring scheme, whenever

a leaf in T1 is assigned a color, the leaf in T2 with that leaf label is automatically assigned the same color.

The scheme does a depth-first traversal of T1 while maintaining two invariants:

(i) When entering a node u, all leaf descendants of u have the color C1 and all other leaves have the

color C0.

(ii) When exiting a node u, all leaves in the entire tree have the color C0.

Initially, all leaves in T1 are colored by C1 so that invariant (i) holds when the traversal starts at the root

of T1. During the traversal, whenever an internal node u 2 V(T1) is reached, the color Ci is assigned to all

leaves in the subtree rooted at ui for i 2 f2‚ 3‚ . . . ‚ kg, where k is the degree of u, u1 is any child of u with

the largest number of leaf descendants, and u2‚ u3‚ . . . ‚ uk are the other children of u in any order. (At this

point, the trees are said to be colored according to u and the main algorithm can check the number of
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elements in rt(T2) that are compatible with this coloring by querying the HDT.) Next, the leaves in the k - 1

subtrees that were just colored are recolored by the color C0 and the scheme recurses on the subtree rooted

at u1, whose leaves still have the color C1. Observe that the first invariant holds when entering the root of

this subtree. After returning from the recursive call, all leaves in the subtree rooted at u1 have color C0 by

invariant (ii), and the subtrees rooted at the other children of u are treated one by one; for each such subtree,

the scheme colors all of its leaves by color C1 and then recurses on it. Again, invariant (i) holds at each

recursive call because the leaves in the subtree are colored by C1 and everything else has color C0. After

handling all k subtrees of u, all leaf descendants of u will have the color C0, so invariant (ii) holds when

exiting from u. The base case of the recursion is when the reached node u 2 V(T1) is a leaf; in this case, the

scheme colors u by C0 and exits so that invariant (ii) holds.

As shown by Brodal et al., a leaf coloring of T2 for every internal node of T1 is generated by the scheme

and the total number of leaf recolorings is O(n log n).

3. THE NEW ALGORITHM

The new algorithm is described in this section. It uses the same framework as Brodal et al.’s (2013)

algorithm. To be precise, it also implicitly assigns each rooted triplet in rt(T1) to an internal node in T1 and

determines, for each node in T1, how many of its assigned rooted triplets appear in rt(T2). The significant

difference between the old algorithm and the new algorithm is how the rooted triplets in rt(T2) assigned to

each node in V(T1) are counted: whereas Brodal et al.’s algorithm uses the HDT data structure, the new

algorithm uses the (in our opinion) conceptually simpler centroid path decomposition technique (Cole

et al., 2000).

3.1. Preliminaries

For convenience, we make T1 and T2 into ordered trees by imposing the following left-to-right ordering

on the children of each node: for every nonleaf node v in a tree, the leftmost child of v is a child of v having

the most leaf descendants (with ties broken arbitrarily) and the other children of v are ordered arbitrarily.

Rooted triplets are always unordered trees, so the definitions of rt(T1), rt(T2), and drt(T1‚ T2) are unaffected

by the left-to-right ordering of T1 and T2.

We first introduce some notation related to leaf colorings corresponding to the internal nodes of T1. Let d

be the degree of T1. Define a set of d + 1 colors fC0‚ C1‚ . . . ‚ Cdg. We usually refer to C1 as RED and C0 as

WHITE, and a leaf that is neither RED nor WHITE as NON-RED. The colors will be assigned to the leaf

label set L, and we say that we are coloring a leaf when we are coloring its label. Let fv1‚ v2‚ . . . ‚ vxg be the

children of an internal node v 2 V(T1) with degree x. Then T1 and T2 are colored according to v if and only

if, for every l 2 L, it holds that

� l is colored by Ci if and only if T1(l) is a descendant of vi for i 2 f1‚ 2‚ . . . ‚ xg and
� l is WHITE if and only if T1(l) is not a descendant of v.

Define a triplet as any subset of L of cardinality-3; each triplet x induces a rooted triplet in T1 (or T2),

namely the rooted triplet belonging to rt(T1) (or rt(T2)) whose leaf label set equals x. Suppose that T1 and T2

are colored according to some internal node v 2 T1. Let t be a triplet. We call t a good triplet if it induces

one of the two (unordered) topologies shown in Figure 2 in T2, where Ca and Cb are colors in

fC1‚ C2‚ . . . ‚ Cdg and a < b. Similarly, t is called a good fan if all its three leaves have different colors

from the set fC1‚ C2‚ . . . ‚ Cdg. (This corresponds to the concept of a triplet being ‘‘compatible with a

coloring’’ in Brodal et al. (2013).)

FIG. 2. Topologies induced by good triplets in T2.
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For a given color Cc and S either a single subtree or a set of subtrees, let Cc(S) be the number of leaves in

S colored by Cc. C1(S) will be referred to as Red(S). Also define C�a(S) =
Pd

i = 2‚ i 6¼a Ci(S) as the number of

NON-RED leaves in S that are not colored by Ca, and CR�a(S) =
Pd

i = 1‚ i6¼a Ci(S) as the number of non-

WHITE leaves in S that are not colored by Ca. Finally, when S is a single tree, define st(S) as the set of

subtrees rooted at the children of the root of S, and Red(2)(S) =
P

Si2st(S)

Red(Si)
2

� �
. We will sometimes use a

node as an argument, meaning the subtree rooted at it.

Next, recall the concept of a centroid path (Cole et al., 2000). A centroid path starting at any node v in a

tree T is a path from v to some leaf of T that, at each internal node, always chooses a child having the largest

number of leaf descendants.

For any tree T that has been ordered according to the rule introduced at the beginning of this subsection,

let cp(T) (‘‘the centroid path of T’’) be the centroid path that starts at the root of T and always selects the

leftmost child until it reaches a leaf. The centroid path decomposition tree (CPDT) of T, denoted by

CPDT(T), is an ordered tree of unbounded degree defined as follows. One node u represents cp(T); u is the

root of CPDT(T). Traverse cp(T) from its lowest node to its highest, and for each node rj in T encountered,

add a single node uj to the ordered set of children of u (making uj the rightmost child so far), and then define

the children of uj as fCPDT(T
j
2)‚ . . . ‚ CPDT(T

j
k)g, where k is the degree of rj and T

j
i is the subtree of T

rooted at the ith child of rj in the left-to-right ordering (Figure 3). We call u a CP-node (centroid path node)

because it represents a whole centroid path in T, and uj an SN-node (single-node node) because it represents

a single node in T. If rj in T has degree 2, then the corresponding SN-node uj in CPDT(T) will have a single

child. We immediately have the following lemma.

Lemma 1. An SN-node is always the child of a CP-node, and the only CP-node that is not the child of an

SN-node is the root.

Moreover, for any vA, vB 2 V(T) with vA � vB that are roots of centroid paths represented by CP-nodes in

CPDT(T), jL(T(vA))jpjL(T(vB))j=2 holds by the definition of a centroid path, so every leaf in T belongs to

at most O( log n) centroid paths represented by CP-nodes, where n = jL(T)j. Thus, CPDT(T) has height

O( log n).

3.2. Description of the new algorithm

First, the algorithm constructs CPDT(T2) and colors all leaves in T1 and T2 RED. Then, for each internal

node v of T1 in depth-first order, the algorithm (a) colors the trees according to v, while simultaneously (b)

counting the resulting number of good triplets and good fans by using CPDT(T2). Finally, the algorithm

returns the value n
3

� �
minus the total number of good triplets and good fans found.

FIG. 3. Illustrating the definition of the centroid path decomposition tree (CPDT). Suppose the ordered tree T has the

structure on the left. Then CPDT(T) has the structure on the right. In CPDT(T), the node u (representing the centroid

path cp(T)) is a CP-node, and the children of u (representing nodes on cp(T)) are SN-nodes.
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To do part (a), the algorithm uses Brodal et al.’s recursive recoloring scheme (summarized in Section 2)

to generate all the leaf colorings, with the following two important modifications:

1. Whenever an internal node v 2 V(T1) is reached, all leaves in L(T1(v))yL(T1(v1)) are first recolored

WHITE.

2. After all leaves in L(T1(v))yL(T1(v1)) have been recolored WHITE, every leaf in the subtree rooted

at vi for i 2 f2‚ 3‚ . . . ‚ kg is assigned the color Ci just like in Brodal et al.’s recoloring scheme, but the

sequence in which the leaves are assigned colors follows their left-to-right ordering in CPDT(T2).

(Recall that by definition, the CPDT is an ordered tree.)

Section 3.4 shows that these two modifications allow one to keep track of coloring information effi-

ciently using the CPDT. The pseudocode for part (a) is presented as procedure ColorTree in Figure 4.

For part (b) (counting good triplets and good fans), note that good triplets and good fans are created only

when leaves are colored by NON-RED colors. Also, every good triplet in T2 corresponds to a good triplet in

CPDT(T2) whose lca is either a CP-node or an SN-node, and similarly for every good fan. The algorithm

therefore computes the number of newly created good triplets and good fans whenever the recursive

coloring scheme colors a leaf l by a NON-RED color as follows: the algorithm traverses the leaf-to-root

path starting at leaf l in CPDT(T2), and for each node u on the path, it counts the number of good triplets

and good fans that include l and whose lca in CPDT(T2) equals u. By adhering to the left-to-right ordering

in CPDT(T2) when coloring the leaves, the algorithm is able to do the counting by applying either Lemmas

2 and 3 or Lemmas 4 and 5 from Section 3.3 hereunder, depending on whether u is a CP-node or an SN-

node. The pseudocode for part (b) is presented as procedure ColorLeaf in Figure 5.

The main algorithm makes one call to ColorTree with the root of T1 as the argument to obtain the total

number of good triplets and good fans, and ColorTree subsequently makes multiple calls to itself and to

ColorLeaf.

FIG. 4. Procedure ColorTree for generating leaf colorings, based on Brodal et al.’s recoloring scheme.
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3.3. Algorithm details and correctness

This subsection first states and proves the four key lemmas (Lemmas 2–5) that the procedure Color-

Leaf in Section 3.2 uses to count newly created good triplets and good fans. The setting is as follows.

Suppose that u is an internal CP-node of the CPDT, ui is a child of u, and u0j is a child of ui, and that the

algorithm is assigning some NON-RED color to a leaf in the subtree rooted at u0j. Furthermore, suppose that

the other leaves have previously been colored so that all leaves in the subtrees rooted at the right siblings (if

any) of ui and u0j are RED or WHITE, whereas the other leaves can have any color (Fig. 6). The formulas in

Lemmas 2 and 3 count how many good triplets and good fans whose lca equals u are introduced when this

occurs, and Lemmas 4 and 5 do the same for SN-nodes.

In the formulas, RED and NON-RED will usually be given separate cases, which is why certain sums

over colors in formulas start from 2. For any internal node u in the CPDT, its ordered children are denoted

(from left to right) by u1‚ . . . ‚ ud, where d is the degree of u and Si is the subtree rooted at ui for each

i 2 f1‚ . . . ‚ dg. Define

S<i = fS : root(S) = uj‚ j < ig
S>i = fS : root(S) = uj‚ j > ig
S�i = fS : root(S) = uj‚ j � ig
S�i = fS : root(S) = uj‚ j � ig:

FIG. 5. Procedure ColorLeaf for counting good triplets and good fans.

FIG. 6. The tree T2 is shown on the left and its CPDT on the right. When the algorithm assigns a NON-RED color to

the leaf marked by an ‘‘X,’’ a number of good triplets and good fans whose lowest common ancestor in the CPDT is u

will be created according to Lemmas 2 and 3. A leaf in a shaded subtree can have any color, whereas a leaf in a

nonshaded subtree is either RED or WHITE.
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Lemma 2. Given an internal CP-node u of the CPDT and some child ui of u, let Si be the subtree rooted

at ui. Also, let u0j be the j-th child of ui and S0j the subtree rooted at it. If there are no NON-RED leaves in S>i

nor in S0>j, the number of good triplets introduced by coloring a leaf by a color Ca in S0j, a � 2, such that

their lca in the CPDT is u, is

Red(S<i)

2

� �
+

Xd

b = 2‚ b6¼a

Cb(S<i)

2

� �
+
X
h>i

Red(2)(Sh) + Ca(S�i) � Red(S>i)

+ Ca(S0j) � Red(S<i) + Ca(S0j) � C�a(S<i):

Proof. Let l be the leaf that is being assigned the color Ca. A good triplet whose lca in CPDT(T2) is u is

created if (i) there are two leaves x‚ y with the color Cb for some b 62 f0‚ ag such that xyjl 2 r(T2) and u is

the lca of x, y, and l or (ii) there are two leaves x‚ y, where x has the color Ca and y has the color Cb with

b 62 f0‚ ag, xljy 2 r(T2), and u is the lca of x, y, and l. As shown in Table 1, there are three possibilities for

each of (i) and (ii), referred to as cases 1–3 and cases 4–6, respectively.

By basic combinatorics, the number of good triplets falling in case 1 is

Red(S<i)

2

� �
:

For case 2, the number is

Xd

b = 2‚ b6¼a

Cb(S<i)

2

� �
:

For case 3, the number is X
h>i

X
St2st(Sh)

Red(St)

2

� �
=
X
h>i

Red(2)(Sh):

For case 4, the number is

Ca(S�i) � Red(S>i):

For case 5, the number is

Ca(S0j) � Red(S<i):

Table 1. The Different Cases in the Proof of Lemma 2

Case 1 R‚ R 2 S<i
Red(S<i)

2

� � Case 4 Ca 2 S�i, R 2 S>i

Ca(S�i) � Red(S>i)

Case 2 Cb;Cb 2 S<i
Cb(S<i)

2

� � Case 5 Ca 2 Si, R 2 S<i

Ca(S0j) � Red(S<i)

Case 3 R‚ R 2 St, St 2 st(Sh),

h > i
P
h>i

P
St2st(Sh)

Red(St)
2

� � Case 6 Ca 2 Si, Cb 2 S<i

Ca(S0j) � Cb(S<i)

Coloring a leaf in a subtree S0j of a subtree Si of a centroid path node u by the color Ca may introduce the

mentioned types of good triplets, whose lowest common ancestor in CPDT(T2) is u.

The left and right columns correspond to conditions (i) and (ii) in the proof of Lemma 2. ‘‘R 2 Si’’

for some subtree Si means that a leaf in Si is currently RED (this corresponds to Cb = C1).
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Finally, for case 6, the number is

Ca(S0j) �
Xd

b = 2‚ b 6¼a

Cb(S<i):

In case 6, Ca is only permitted to be in an S0j because Ca 2 S0<j would induce a fan of the form CajCajCb

in T2, which is not to be counted. -

Lemma 3. Given an internal CP-node u of the CPDT and some child ui of u, let Si be the subtree rooted

at ui. Also, let u0j be the j-th child of ui and S0j the subtree rooted at it. If there are no NON-RED leaves in S>i

nor in S0>j, the number of good fans introduced by coloring a leaf by a color Ca in S0j, a � 2, such that their

lca in the CPDT is u, is

CR�a(S<i) � CR�a(S0<j) -
Xd

b = 1‚ b 6¼a

Cb(S<i) � Cb(S0<j) + C�a(S<i) � Red(S0>j):

Proof. Consider a triplet fx‚ y‚ zg, introduced by coloring a leaf in S0j by Ca, inducing a good fan with u as

lca. Without loss of generality, assume the leaf in S0j is x. Then

(a) y 2 S<i and either z 2 S0<j or z 2 S0>j; furthermore, neither y nor z is colored by color Ca;

(b) y is colored by a color Cb and z by a color Cc, where Cb;Cc 2 fC1‚ C2‚ . . . ‚ Cdg such that Cb 6¼ Cc.

First, consider triplets such that z 2 S0<j. The number of triplets satisfying condition (a) isPd
b = 1‚ b 6¼a

Cb(S<i) �
Pd

b = 1‚ b 6¼a

Cb(S0<j). We subtract the number of triplets satisfying condition (a) but not (b), that

is
Pd

b = 1‚ b 6¼a

Cb(S<i) � Cb(S0<j), which gives the first part of the formula. Second, consider z 2 S0>j. By the

assumptions, z can only be RED, and the number of such triplets is
Pd

b = 2‚ b6¼a

Cb(S<i) � Red(S0>j), which gives

the second part of the formula. -

Lemma 4. Given an SN-node v of the CPDT and some child vi of v, let Si be the subtree rooted at vi. If

there are no NON-RED leaves in S>i, the number of good triplets introduced by coloring a leaf by a color

Ca in Si, a � 2, such that their lca in the CPDT is v, is

Xi - 1

j = 1

Red(Sj)

2

� �
+
X
j>i

Red(Sj)

2

� �
+

Xd

b = 2‚ b 6¼a

Xi - 1

j = 1

Cb(Sj)

2

� �
+ Ca(Si) � (Red(S<i)

+ Red(S>i)) + Ca(Si) � Ca(S<i):

Proof. The proof is similar to the proof of Lemma 2. We divide the triplets that are induced into two cases:

(a) one Ca-colored leaf (the one being colored) in Si, and two Cb-colored leaves in Sj, j 6¼ i, where Cb is a

color different from Ca;

(b) two Ca-colored leaves (one of which is being colored) in Si, and another leaf, of a different color Cb, in

Sj, j 6¼ i.

We also differentiate between Cb = C1 (RED) and Cb 62 fC1‚ Cag, which gives two subcases for each of

(a) and (b). Table 2 summarizes all the subcases.

The number of triplets in case 1 of Table 2 is

Xi - 1

j = 1

Red(Sj)

2

� �
+
X
j>i

Red(Sj)

2

� �
:

For case 2, the number is

Xd

b = 2‚ b 6¼a

Xi - 1

j = 1

Cb(Sj)

2

� �
:
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For case 3, the number is

Ca(Si) � (Red(S<i) + Red(S>i)):

Finally, for case 4, the number is

Ca(Si) �
Xd

b = 2‚ b 6¼a

Cb(S<i): -

Lemma 5. Given an SN-node v of the CPDT and some child vi of v, let Si be the subtree rooted at vi. If

there are no NON-RED leaves in S>i, the number of good fans introduced by coloring a leaf by a color Ca

in Si, a � 2, such that their lca in the CPDT is v, is

CR�a(S<i)

2

� �
-

Xd

b = 1‚ b6¼a

Cb(S<i)

2

� �
-
Xi - 1

h = 1

CR�a(Sh)

2

� �

+
Xi - 1

h = 1

Xd

b = 1‚ b6¼a

Cb(Sh)

2

� �
+ C�a(S<i) � Red(S>i)

:

Proof. Consider a triplet fx‚ y‚ zg, introduced by coloring a leaf in Si by Ca, inducing a good fan with v as

lca. Without loss of generality, assume that the leaf in Si is x and that y is to the left of z in the CPDT. There

are two possible situations:

(1) y‚ z 2 S<i.

(2) y 2 S<i, z 2 S>i.

(y‚ z 2 S>i is not possible as it would imply two RED leaves, which cannot induce a good fan.)

In case (1), the following additional conditions must be satisfied:

(a) neither y nor z is colored by the color Ca;

(b) y is colored by a color Cb and z by a color Cc, where Cb;Cc 2 fC1‚ C2‚ . . . ‚ Cdg such that Cb 6¼ Cc; and

(c) y 2 Sh1
, z 2 Sh2

, h1 6¼ h2.

The number of triplets satisfying condition (a) is

Pd
b = 1‚ b 6¼a

Cb(S<i)

2

0
BB@

1
CCA =

CR�a(S<i)

2

� �
:

Table 2. The Different Cases in the Proof of Lemma 4

(1) R‚ R 2 Sj, j 6¼ iPi - 1

j = 1

Red(Sj)
2

� �
+
P
j>i

Red(Sj)
2

� � (3) Ca 2 Si, R 2 Sj, j 6¼ i

Ca(Si) � (Red(S<i) + Red(S>i))

(2) Cb;Cb 2 Sj, j < iPi - 1

j = 1

Cb(Sj)
2

� � (4) Ca 2 Si, Cb 2 S<i

Ca(Si) � Cb(S<i)

When coloring a leaf in a subtree Si of an SN-node v by Ca, the mentioned different types

of good triplets, such that their lowest common ancestor is v, may be introduced.
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We subtract the number of triplets satisfying (a) but not (b), that is,

Xd

b = 1‚ b 6¼a

Cb(S<i)

2

� �
;

and (a) but not (c), that is,

Xi - 1

h = 1

P
b = 1‚ b 6¼a

Cb(Sh)

2

 !
=
Xi - 1

h = 1

CR�a(Sh)

2

� �
:

Finally, we add back the number of triplets satisfying (a) but neither (b) nor (c) because we removed it

twice:

Xi - 1

h = 1

Xd

b = 1‚ b 6¼a

Cb(Sh)

2

� �
:

Case (2), is simple; by the assumption, z can only be RED and y can be any color except for RED or Ca,

giving the term

Xd

b = 2‚ b6¼a

Cb(S<i) � Red(S>i): -

Observe that whenever ColorTree calls ColorLeaf (l;Ca) with aq2, all leaves belonging to T1(v1)

will be RED, whereas all leaves in T1(v2)‚ . . . ‚ T1(vdv
) that come after l in the left-to-right ordering in

CPDT(T2) will still be WHITE. This means that the conditions ‘‘if there are no NON-RED leaves in S>i nor

in S0>j’’ in Lemmas 2 and 3 and ‘‘if there are no NON-RED leaves in S>i’’ in Lemmas 4 and 5 are always

satisfied when the algorithm invokes the lemmas.

We now prove that for each given coloring according to a node v in V(T1), the algorithm indeed

counts the number of unique good triplets and good fans, which then yields the algorithm’s correctness.

Theorem 1. Suppose T1 and T2 are colored according to v 2 V(T1). Then every good triplet and every

good fan is counted exactly once by the algorithm.

Proof. For any leaf label l in T2, let AncT2
(l) be the set of ancestors of T2(l). Also let

AncCPDT (l) = fa0‚ a1‚ a2‚ . . . ‚ arg be the ordered set of the ancestors of l in CPDT(T2); a0 is the leaf l itself,

whereas ar is the root. Given an arbitrary node aj in AncCPDT (l), j � 1, let cpT2
(aj) be the set of nodes on the

centroid path in T2 represented by aj; when aj is an SN-node, cpT2
(aj) is a single node.

Lemma 2, when applied to a CP-node v in the CPDT, counts the number of unique good triplets

rooted at it, thus at any node in cpT2
(v). Lemma 4 does the same to an SN-node. When we color l by a

NON-RED color, the good triplets we are introducing must clearly have their lca in T2 in AncT2
(l), so their

lca in CPDT(T2) must be in AncCPDT (l); therefore, the algorithm counts every good triplet introduced by l.

Let us consider two arbitrary nodes ai‚ aj 2 AncCPDT (l), i > j: cpT2
(ai) \ cpT2

(aj) 6¼ ; iff ai is a CP-node

and parent(aj) = ai, in which case cpT2
(ai) \ cpT2

(aj) = cpT2
(aj). We only need to prove that we are not

double-counting triplets rooted at node v = cpT2
(aj). Let fv1‚ v2‚ . . . ‚ vkg be the set of children of v. Given a

triplet, its lca in CPDT is aj iff its lca in T2 is v and it has no leaves in v1, whereas its lca in CPDT is ai iff

either its lca in T2 is v and it has at least one leaf in v1 or its lca is an ancestor of v. Therefore, no triplet is

counted twice. To sum up, when we color a leaf label l, we count every newly introduced good triplet

exactly once.

Finally, the proof that no good triplet is counted when coloring two different leaves is trivial, because

every triplet will only be counted when its rightmost NON-RED leaf is colored.

An analogous argument works for the good fans. -

3.4. Time and space complexity analysis

In this subsection, we analyze the complexity of the new algorithm.

The values in Lemmas 2–5 for any specified node in the CPDT can be obtained by a direct method in

O(n) time. This will be too slow for our purposes, so we first reduce it to O( log n) time (Lemmas 7 and 8).
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The solution uses the range sum query data structure (RSQ), a data structure for representing an array of

non-negative integers A[1::n] so that it is possible to,

(1) given an index i 2 [1::n], change the value of A[i];

(2) given two positions s; t 2 [1::n], where s � t, return the sum
Pt

i = s A[i].

Given an RSQ R, we refer to the array of numbers over which R supports queries as R:A.

We shall rely on the following classical result from the literature [see, e.g., (Fredman, 1982)]:

Lemma 6. An RSQ supporting operations (1) and (2) in O( log n) time can be implemented in O(n) space

and O(n) preprocessing time.

Now, for each node v in the CPDT, define and store the following set of counters, where fv1‚ v2‚ . . . ‚ vkg
denotes the set of children of v:

Cc(v); 8c 2 f2‚ . . . ‚ dg; as defined in Section 3.1

C(v) =
Xd

c = 2

Cc(v)

C2
c (v) =

Cc(v)

2

� �
; 8c 2 f2‚ . . . ‚ dg

C2(v) =
Xd

c = 2

C2
c (v)

C(2)
c (v) =

Xk

i = 1

Cc(vi)

2

� �
; 8c 2 f2‚ . . . ‚ dg

C(2)(v) =
Xd

c = 2

C(2)
c (v)

SS(v) =
Xk

i = 1

Pd
b = 2

Cb(vi)

2

0
B@

1
CA +

Xd

b = 2

Cb(vi) � Red(vi)

SSc(v) =
Xk

i = 1

Cc(vi) � (Cc(vi) + Red(vi)) +
Cc(vi)

2

� �
; 8c 2 f2‚ . . . ‚ dg:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

Also store three RSQs, named R1(v), R2(v), and R3(v), such that

R1(v):A[i] = Red(vi);R2(v):A[i] =
Red(vi)

2

� �
; and R3(v):A[i] = Red(2)(vi):

Lemma 7. The values in Lemmas 2 and 3 can be found in O( log n) time.

Proof. By the assumptions in Lemmas 2 and 3, no NON-RED leaf is in S>i. Therefore, Cc(u) = Cc(S�i).

As Cc(ui) = Cc(Si), it is easy to compute Cc(S<i). A similar argument works for every counter: starting from

its values for u and ui, we can compute its value for S<i.

Next, when coloring leaves in S0j, all leaves in S<i have already been colored. Thus, the values Cc(S<i)

for all c 2 f2‚ . . . ‚ dg are fixed. We keep track of the current value of Cc(S<i) � Cc(S0<j) for all

c 2 f2‚ . . . ‚ dg in S0j as we color leaves in it, plus the value
Pd
b = 2

Cb(S<i) � Cb(S0<j). Then

Pd
b = 1‚ b6¼a

Cb(S<i) � Cb(S0<j) =
Pd
b = 2

Cb(S<i) � Cb(S0<j) - Ca(S<i) � Ca(S0<j) + Red(S<i) � Red(S0<j).

The other quantities can be deduced using the counters and the RSQs already defined. When making

range queries on them, we apply Lemma 6, which gives a time complexity of O( log n). -
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Lemma 8. The values in Lemmas 4 and 5 can be found in O( log n) time.

Proof. The only nontrivial quantity is
Pi - 1

h = 1

Pd

b = 1‚ b 6¼a

Cb(Sh)

2

0
@

1
A = SS(S<i) +

Pi - 1

h = 1

Red(Sh)

2

0
@

1
A - SSa(S<i), which we

explain now. We need to compute the number of pairs of colored leaves such that both leaves are in the

same subtree Sh, h < i, and none of the leaves is colored by Ca. SS(S<i) is the number of pairs of colored

leaves such that both leaves are in the same subtree Sh, h < i, but the two leaves are not colored RED.

Adding
Pi - 1

h = 1

Red(Sh)
2

� �
, we remove the latter restriction, thus getting the number of pairs of colored leaves such

that both leaves are in the same subtree Sh, h < i. Finally, we remove SSa(S<i), which is the number of pairs

of colored leaves in the same subtree such that at least one leaf is colored by Ca.

As in the proof of Lemma 7, the other quantities can be obtained in O( log n) time using Lemma 6 and the

counters and RSQs already mentioned. -

During the execution of the algorithm, the number of good triplets and good fans created when coloring a

leaf NON-RED can be obtained by applying Lemmas 2–5 to the leaf and all its ancestors in the CPDT;

Lemmas 7 and 8 provide these values for any specified node of the CPDT in O( log n) time.

To ensure that Lemmas 7 and 8 can still be applied after leaves are recolored, the counters and RSQs for

certain nodes need to be updated. More precisely, we extend the algorithm so that

� whenever a leaf is colored RED or WHITE, we traverse its leaf-to-root path in the CPDT and update

every RSQ on it, taking O( log n) time per node by Lemma 6 (Lemmas 7 and 8 are not applied here

because no good triplets or good fans can be created when coloring a leaf RED or WHITE) and
� whenever a leaf is colored NON-RED, we traverse its leaf-to-root path in the CPDT and, after applying

Lemmas 7 and 8 to each node on the path, we update its counters in O(1) time.

In summary, each node in the CPDT that is visited after a leaf recoloring can be taken care of in O( log n)

time. This gives the following theorem.

Theorem 2. The time complexity of the new algorithm is O(n log3 n) and the space complexity is

O(n log n).

Proof. Constructing CPDT(T2) in the first step takes O(n) time according to the definition of CPDT.

By Brodal et al.’s (2013) analysis, a total of O(n log n) leaf colorings occur. Whenever a leaf is colored,

we visit all nodes on its leaf-to-root path in the CPDT; its length is O( log n), leading to a total of

O(n log2 n) node visits in the CPDT. Observe that although some nodes such as the root may be visitedO(n log n)

times, the total number of node visits is bounded by O(n log2 n). By the comments after Lemma 8, O( log n)

time is used for each node visit in the CPDT. Thus, the time complexity of the algorithm is O(n log3 n).

To analyze the space complexity, first consider how to represent the counters efficiently. (When d

is large, e.g., if all leaves of T1 are directly attached to the root, representing the counters naively leads

to quadratic space.) At any time, a subtree of the CPDT needs to use at most as many colors as it has

leaves. As the height of the CPDT is O( log n), every leaf in the CPDT is a descendant of O( log n)

nodes and may, therefore, affect O( log n) different counters. Hence, the algorithm only needs to use

O(n log n) counters, and each one takes one word of memory. Next, by Lemma 6, the space needed by

the three RSQs for any node v in the CPDT is O(d(v)), where d(v) is the degree of v in CPDT(T2).

Summing over all nodes gives
P

v2V(CPDT(T2)) d(v) = O(n). In total, the space complexity is O(n log n) +
O(n) = O(n log n) words. -

4. IMPLEMENTATION

We have implemented the algorithm in Section 3 in two versions: a special binary trees-only optimized

version and one for general trees. The importance of the special case in which both trees are binary justifies

a dedicated implementation. The binary trees-only version is more efficient and much easier to implement

because of the following:
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� The number of colors is constant, which means that the representation of the counters defined in

Section 3.4 becomes more compact.
� The formulas in Lemmas 2–5 become simpler.
� All SN-nodes will now always have a single child, so we can omit them; consequently, the CPDT only

needs one type of node (CP-node), which makes the data structure smaller and eliminates the need for

SN-node operations.

Only plain standard C++ was used, except for an (optional) single feature from C++11, mentioned

hereunder. The source code can be downloaded from

(http://sunflower.kuicr.kyoto-u.ac.jp/*jj/Software/CPDT-dist.html).

A few optimizations that improve the running time in practice are discussed next.

4.1. Representation of the counters and RSQs

We implemented the counters as follows. Let d be the number of children of the highest degree node in

T1. In any given node v in the CPDT, for each set of counters, we allocate an array of length

minfd‚ leaves(v)g, where leaves(v) is the number of leaves in the subtree of the CPDT rooted at v. Note that

when the length of the arrays is < d, counters for color k 2 f1‚ . . . ‚ dg may not be stored in position k in the

arrays, so we use a map int-to-int to maintain an association between the (used) colors in f1‚ . . . ‚ dg and

their actual position in the arrays. We used a hashmap to implement the maps, which allows constant-time

insertion and retrieval. We tested two different implementations of the hashmap: the C++11 un-

ordered_map (unordered_map) included in the standard library of our test system, requiring C++11 support,

and the dense_hash_map class in the (former) Google project sparsehash (sparsehash). We can choose

which one to use at compile time. Some experimental results for both libraries are reported in Section 5.

To implement the RSQs in Section 3.4, we used a data structure by Fenwick (1994), which has a good

practical performance while achieving the time and space complexity bounds stated in Lemma 6.

4.2. Two-step coloring

In the theoretical version of the algorithm, for simplicity, when coloring leaves by NON-RED colors in

left-to-right order in the CPDT, we take each leaf in order and count the good triplets rooted at each of its

ancestors up to the root. It is evident that some nodes are considered many times. In the implementation, we

do it slightly differently: first, we mark all the nodes in the CPDT that we need to consider, that is, all nodes

that are ancestors of at least one leaf being colored; for each leaf, we start at it and go up until we reach

either the root or an already marked node, marking all nodes along the way. Second, we traverse the marked

subtree in postorder and when we visit a given node, we already know how many leaves we are coloring for

each color; modifying the formulas in Lemmas 2–5 to count all the good triplets introduced by such leaves,

for each color, in one go is straightforward.

We illustrate this using Lemma 2. Suppose we are coloring k leaves in S0j at once, and currently

Ca(S0j) = 0. Good triplets falling into cases 1–3 will be introduced once for each leaf colored Ca; hence the

first part of the equation becomes

k
(S<i)

2

� �
+

Xd

b = 2‚ b6¼a

Cb(S<i)

2

� �
+
X
h>i

Red(2)(Sh)

 !
:

Next, by coloring all k leaves at once (instead of one by one), k
2

� �
Red(S<i) triplets are introduced for case

5, and k
2

� �
Cb(S<i) for case 6, because each possible pair among the k leaves may form a good triplet. Case 4

is a bit more complex, as it has two subcases: either both Ca-colored leaves are in S0j, or only one is and the

second one is in Ca(S<i) or Ca(S0<j). Therefore, the second part of the equation becomes

k Ca(S<i) + Ca(S0<j)
� �

+
k

2

� �� �
Red(S>i) +

k

2

� �
(Red(S<i) + Cb(S<i)):

Newly introduced good fans and good triplets of the form CbCbjCa can be naively counted k times. In

contrast, good triplets of the form CaCajCb fall into two cases: either (a) only one Ca-colored leaf is

recolored or (b) both Ca-colored leaves are recolored, and the formulas are adapted accordingly.

A MORE PRACTICAL ALGORITHM FOR THE ROOTED TRIPLET DISTANCE 119



4.3. The coloring scheme

A few optimizations were made to the coloring scheme.

First, consider what happens when the coloring scheme begins. We start by coloring all the leaves RED,

only to immediately recolor leaves not in the biggest subtree of the root, first WHITE and then by NON-

RED colors. This happens many times, that is, every time we color a subtree RED and immediately recurse

on it. We save some unnecessary operations by only coloring RED leaves in the biggest subtree. As

coloring a leaf RED and WHITE requires updating a number of RSQs and is a fairly expensive operation,

this saves us a lot of time.

Next, cherry nodes (degree-2 nodes whose two children are leaves) are not colored because they cannot

yield any good triplets. By not considering them, we eliminate some RED and WHITE recolorings.

Finally, when we color a single leaf (or even a sufficiently low number of leaves), the two-step coloring

can actually be a burden. In such a case, we skip the marking step and apply Lemmas 2–5 directly on every

node along the leaf-to-root path.

5. EXPERIMENTS

We compared the running time and memory usage in practice of the new algorithm with that of tqDist

(Sand et al., 2014) by a series of experiments, as described in this section.

5.1. Experimental setup

The experiments were performed on a computer running Ubuntu 12.04, with an Intel Xeon W3530

(quad-core, 2.8 GHz) and 12 GB of RAM. The system C++ compiler was g++, version 4.6.3.

We used the C++ implementations of our algorithm presented in Section 4: one for general trees and a

special binary trees-only optimized version. As mentioned in Section 4, the algorithm can be compiled

using two different hashmaps: C++11 unordered_map (unordered_map) (we named this CPDT) and

sparsehash (sparsehash) (named CPDTg). We improperly refer to CPDT and CPDTg as ‘‘implementa-

tions’’ of our algorithm, but they are actually a single implementation linked against two different hashmap

libraries. tqDist (Sand et al., 2014) was built from its source code using cmake, as instructed by the authors.

We had to disable the HDT dynamic contraction (Holt et al., 2014) of tqDist as it was making the tool run

tens of times slower; built with the default parameters, it would usually take more than 1 hour for two

random 1 million leaves trees. We also modified it to use unsigned 64 bits instead of signed bits so that it

would correctly compute the rooted triplet distance for very large values of n.

Running times were measured using the time command, which gives the sum of system and user times

and includes the time spent parsing the trees from a file; the average over 50 runs was taken. Memory usage

was measured using Valgrind (Nethercote and Seward, 2007) and its heap profiling tool Massif. Owing to

the slowdown caused by Valgrind, we took the average over 20 runs.

5.2. Input trees

Our implementations and tqDist were applied to pairs of trees with values of n up to 4,000,000.

Arbitrary-degree input trees were generated as follows.

First, generate a binary tree with n leaves in the uniform model (McKenzie and Steel, 2000;

Semple and Steel, 2003; Blum et al., 2006), that is, the probabilistic model of a phylogenetic tree in

which all binary trees on n leaves are equally likely. Next, for each nonroot, internal node v in the tree,

contract it (i.e., make the children of v become children of v’s parent, and remove v) with some fixed

probability p.

The mathematical properties of the uniform model have previously been well studied (see, e.g.,

(McKenzie and Steel, 2000; Semple and Steel, 2003; Blum et al., 2006) and the references therein). For

example, it is known that the expected average depth of a leaf in a random binary tree with n leaves

generated in the uniform model is Y(n1=2) (Blum et al., 2006). The uniform model is also called the PDA

model in the literature (Semple and Steel, 2003).

Hereunder, we let pi for i 2 f1‚ 2g be the chosen value of p when generating Ti. We used three values of

p1 and p2: 0.2, 0.5, and 0.8, calling the generated trees lowly branching, moderately branching, and highly

branching, respectively. In addition, we created a set in which both trees are binary by setting p1 = p2 = 0,
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and two sets in which p1 is 0.95 (respectively, 0.2) and p2 is 0.2 (respectively, 0.95) to test the algorithms

when dealing with extremely branching trees, that is, flat trees with very high degree. Also, the benchmarks

were executed on pairs of unrelated as well as related trees, where two unrelated trees were generated

independently of each other and two related trees were generated by starting from the same binary tree.

Finally, to test the algorithms on trees of height Y(n), we applied them to pairs of randomly generated

caterpillars (binary trees in which every internal node has at least one child that is a leaf), constructed by

taking random permutations of the set f1‚ 2‚ . . . ‚ ng.

5.3. Results

Table 3 reports the average running times of the three implementations tested on pairs of trees with 4

million leaves, along with the relative speedups over tqDist. Figure 7 shows the plots of the average running

times as a function of n for binary trees as well as for nonbinary trees obtained using some representative

(p1‚ p2) values.

The binary case (p1 = p2 = 0)) benefits greatly from having a special implementation, being about 40%

faster than the general implementation for arbitrary-degree trees and showing a more than sixfold im-

provement over tqDist when n = 4‚ 000‚ 000. As it does not rely on hashmaps, we have a single im-

plementation of the CPDT.

For unrelated arbitrary-degree trees with n = 4‚ 000‚ 000, CPDTg is clearly the fastest implementation,

consistently being at least three times faster than tqDist and showing noticeable improvements over CPDT.

All three implementations seem to prefer instances in which either p1 or p2 is large. While the latter is

obvious, as a large value of p2 implies that the number of internal nodes in T2 will be small, the former is

interesting as it indicates that they are able to handle a huge number of colors more easily. (We remark here

that additional experiments have shown that for smaller n such as n = 10‚ 000, CPDTg is only 2.17 times

faster than tqDist on average, and for n = 100‚ 000, CPDTg is 2.65 times faster than tqDist.)

For related trees, all three implementations become much faster. CPDTg still has an obvious advantage,

although speedups here are around 2.0–2.5 · . This can be at least partially explained by overheads, such as

tree parsing from files, becoming more significant as the running times of the actual algorithms decrease.

The notion of ‘‘related trees’’ is not applicable when p1 = p2 = 0 because without contractions, the generated

T1 and T2 will always be equal to each other.

The average memory usage of the three implementations for pairs of unrelated trees is reported in

Table 4 and Figure 8. CPDT is the least memory hungry, showing an improvement over tqDist of 3.78· on

binary trees and up to 2.35· on arbitrary-degree trees, with CPDTg being a close second. They all benefit

from increasing p2 (meaning fewer internal nodes in T2, so that the CPDT needs less memory). In contrast,

only CPDT and CPDTg seem to suffer from increasing p1 (meaning more colors and hence more counters),

and in the extremely branching case, the advantages of CPDT and CPDTg decrease to 1.33· and 1.24·,

respectively, over tqDist.

For pairs of caterpillars, the average running times and average memory usage are plotted in Figure 9.

Both tqDist and CPDT are much faster in this case than for randomly generated binary trees, that is, the

case shown in Figure 7a, but CPDT is still faster than tqDist. The memory usage is about the same as in

Figure 8a. This shows that even when the input trees have large heights, CPDT performs well.

Table 3. Average Running Times (in Seconds) on Two 4 Million Leaves Trees

and Relative Speedups Over tqDist

p1 p2

Unrelated trees Related trees

tqDist CPDT CPDTg tqDist CPDT CPDTg

0.0 0.0 282.49 1.00· 42.92 6.58· — — — — — — — —

0.2 0.2 293.10 1.00· 83.98 3.49· 78.04 3.76· 55.05 1.00· 24.20 2.27· 22.61 2.43·
0.2 0.95 230.42 1.00· 63.16 3.65· 58.38 3.95· 42.45 1.00· 18.01 2.36· 16.40 2.59·
0.5 0.5 281.72 1.00· 91.76 3.07· 85.51 3.29· 49.18 1.00· 24.10 2.04· 23.62 2.08·
0.8 0.8 237.14 1.00· 77.07 3.08· 72.43 3.27· 40.65 1.00· 19.02 2.14· 17.71 2.30·
0.95 0.2 213.50 1.00· 68.14 3.13· 63.97 3.34· 47.20 1.00· 21.76 2.17· 18.98 2.49·
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Table 4. Average Memory Usage (in GB) on Two 4 Million Leaves Trees

and the Relative Memory Usage Decrease Over tqDist

p1 p2 tqDist CPDT CPDTg

0.0 0.0 9.97 1.00· 2.64 3.78· — —

0.2 0.2 9.10 1.00· 4.10 2.22· 4.54 2.00·
0.2 0.95 6.27 1.00· 2.67 2.35· 2.73 2.30·
0.5 0.5 7.76 1.00· 4.01 1.94· 4.40 1.76·
0.8 0.8 6.38 1.00· 3.51 1.82· 3.72 1.72·
0.95 0.2 8.53 1.00· 6.42 1.33· 6.86 1.24·

FIG. 7. Plots of the average running time in seconds (y-axis) against n (x-axis), for binary trees and for some representative

values of (p1‚ p2). Solid lines represent values on unrelated trees, and dashed lines represent values on related trees.
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Finally, we experimentally confirmed that the time complexity of our current implementation is

O(n log3 n) by dividing the running times by the value of n ln3 n for increasing n (Table 5). In the table, a(n)

is the average running time for randomly generated inputs with n leaves divided by n ln3 n and multiplied

by a large constant to make the results easily readable. According to the table, a(n) seems to converge to a

constant as n!1.

FIG. 8. Plots of the memory usage in gigabytes (y-axis) against n (x-axis), for binary trees and for some represen-

tative values of (p1‚ p2).
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6. CONCLUDING REMARKS

Bansal et al.’s (2011) parametric rooted triplet distance is a generalization of the rooted triplet distance

that allows a conflict between a fan triplet in one input tree and a resolved triplet in the other input tree to be

penalized less severely than a conflict between two resolved triplets. It is defined for any real number p with

0ppp1 as d
(p)
rt (T1‚ T2) = jD(T1‚ T2)j + p � (jR(T1‚ T2)j+ jR(T2‚ T1)j), where jD(T1‚ T2)j is the number of

cardinality-3 subsets of the leaf label set that induce two different resolved triplets in T1 and T2 and

jR(Ti‚ Tj)j is the number of cardinality-3 subsets of the leaf label set that induce a resolved triplet in Tj

and a fan triplet in Tj. (Selecting p = 1 yields the original rooted triplet distance.) The algorithms in Bansal

et al. (2011) and Brodal et al. (2013) can be modified to compute the parametric rooted triplet distance

without increasing the asymptotic time complexity, and we now show that the algorithm in Section 3 is

easily extendable in a similar way. Let f (Ti‚ Tj) for any i‚ j 2 f1‚ 2g be the total number of good fans

found by the algorithm in Section 3 when computing drt(Ti‚ Tj). Then f (Ti‚ Ti) equals the number of fan

triplets in rt(Ti), so jR(T1‚ T2)j = f (T2‚ T2) - f (T1‚ T2), and analogously, jR(T2‚ T1)j = f (T1‚ T1) - f (T1‚ T2).

Thus, the term p � (jR(T1‚ T2)j + jR(T2‚ T1)j) in the formula for d
(p)
rt (T1‚ T2) can be computed without

increasing the asymptotic time complexity. (We remark that in practice, it may be faster to use some

special-purpose O(n)-time method to compute f (T1‚ T1) and f (T2‚ T2), such as those presented in Bansal

et al. (2011) and Brodal et al. (2013).) The other term, jD(T1‚ T2)j, is obtained at no extra cost by

taking n
3

� �
- (jS(T1‚ T2)j + jR(T1‚ T2)j + jR(T2‚ T1)j + f (T1‚ T2)), where jS(T1‚ T2)j is the total number of

good triplets found by the algorithm in Section 3 when computing drt(T1‚ T2).

A question for future research is as follows: Can the theoretical or practical running times of the CPDT-

based algorithm be reduced? As noted at the end of Section 5, dividing the running times of our current

FIG. 9. Plots for caterpillar trees, corresponding to those in Figure 7a and Figure 8a.

Table 5. Experimental Validation

of the Asymtomatic Running Time

n a(n)

1,000,000 0.991215

1,500,000 0.999724

2,000,000 0.995861

2,500,000 1.03432

3,000,000 1.01342

3,500,000 1.01844

4,000,000 1.01718

a(n) seems to converge to a constant as

n!1, which suggests that the time complex-

ity is indeed O(n log3 n).

124 JANSSON AND RAJABY



implementation by n ln3 n seems to converge to a constant as n!1, which confirms the theoretical

analysis in Section 3.4. However, the CPDT respects the definition of locally balanced in Brodal et al.

(2013), so perhaps the algorithm can be refined in a way such that the analysis technique in Section 5 of

Brodal et al. (2013) can be applied? To achieve an improved bound of O(n log2 n) on the time complexity,

one needs to prove that when the procedure ColorTree makes a recursive call to any v 2 V(T1) and

recolors the leaves in each T1(vi), the algorithm can charge an average of O((1 + log
jL(T1(v))j
jL(T1(vi))j ) � log n) work

to every leaf in T1(vi). For this purpose, it may be necessary to modify ColorTree so that any recursive

call to vi 2 V(T1) first compresses the CPDT to O(jL(T1(vi))j) size, that is, by restricting CPDT(T2) to the

leaves in L(T1(vi)), without spending too much additional time to update all the auxiliary information.

To make the algorithm faster in practice, one might try to parallelize it. Unfortunately, this is difficult

because of possible imbalance in the trees and the intrinsic data dependencies of the algorithm.

Computing the quartet distance for unrooted trees seems more difficult than computing the rooted triplet

distance for rooted trees (Brodal et al., 2013). It would be interesting to see whether the CPDT can be

adapted to get an efficient algorithm for this variant.

A fundamental unsolved open problem is whether or not the rooted triplet distance can be computed in

O(n) time. A linear-time algorithm would require a set of totally different techniques than those used here

because Brodal et al.’s recursive recoloring scheme already introduces O(n log n) work.
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