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Given a distance matrix M that specifies the pairwise evolutionary distances between
n species, the phylogenetic tree reconstruction problem asks for an edge-weighted phy-
logenetic tree that satisfies M , if one exists. We study some extensions of this problem
to rooted phylogenetic networks. Our main result is an O(n2 log n)-time algorithm for
determining whether there is an ultrametric galled network that satisfies M , and if so,
constructing one. In fact, if such an ultrametric galled network exists, our algorithm
is guaranteed to construct one containing the minimum possible number of nodes with
more than one parent (hybrid nodes). We also prove that finding a largest possible sub-
matrix M ′ of M such that there exists an ultrametric galled network that satisfies M ′
is NP-hard. Furthermore, we show that given an incomplete distance matrix (i.e. where
some matrix entries are missing), it is also NP-hard to determine whether there exists
an ultrametric galled network which satisfies it.

Keywords: Phylogenetic network; ultrametric galled network; distance-based reconstruc-
tion; algorithm.

1. Introduction

A phylogenetic network is a generalization of a phylogenetic tree, which can be
used to describe the evolutionary history of a set of species that is nontreelike, for
example, due to recombination events such as hybrid speciation or horizontal gene

∗A preliminary version of this paper has appeared in the Proceedings of the 30th International
Symposium on Mathematical Foundations of Computer Science (MFCS 2005).
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Fig. 1. The (galled and ultrametric) phylogenetic network on the left satisfies the distance
matrix M on the right. There are two evolutionary paths (a, n3, n4, n5, c) and (a, n3, n1, n2, n5, c)
with lengths 6 and 10, respectively, connecting a and c. The entry M(a, c) corresponds to the first
path. Note that there does not exist any phylogenetic tree that satisfies M .

transfer14,22–24,27 or to represent several conflicting phylogenetic trees at once in
order to identify parts where the trees disagree.4,17,18

To develop efficient methods for inferring phylogenetic networks is an important
topic in computational biology. In particular, one promising category of methods
which includes methods such as Neighbor-Net4 and several others (see Ref. 24 for
a survey) is known as distance-based. Here, the input consists of a (symmetric and
nonnegative) distance matrix which specifies the pairwise evolutionary distances
between the species. To infer a phylogenetic tree from such a matrix is a well-
studied problem,5,7,9,12,25,26,28 the basic objective being to construct an edge-
weighted phylogenetic tree such that for any two species, the length of the path
between them in the tree equals the corresponding entry in the matrix. It should be
noted that in a phylogenetic tree, the path between two specified leaves is always
unique. On the other hand, due to recombination events, for any two species in
a phylogenetic network, there can be more than one path connecting them with
different path lengths. The entry in the input matrix may correspond to one of
these paths only. Hence, in some cases, there may exist a phylogenetic network
that satisfies the given distance matrix (see the definition below), while no such
phylogenetic tree exists (e.g. see Fig. 1). In this paper, we consider some natural
extensions of the distance-based variant of the phylogenetic tree reconstruction
problem to phylogenetic networks and present a new algorithm.

Problem definitions: A rooted phylogenetic network for a set S of species is a
rooted, connected, directed acyclic graph such that: (i) exactly one node (the root)
has indegree 0 and all other nodes have indegree 1 or 2; (ii) any node with indegree 2
(called a hybrid node) has outdegree 1 and all other nodes have outdegree 0 or 2; and
(iii) each node with outdegree 0 (a leaf ) is labeled with a distinct species from S.
A rooted phylogenetic network is called a galled phylogenetic network, or galled
network for short,a if all cycles in the underlying undirected graph (i.e. where edge

aGalled networks are also known in the literature as topologies with independent recombination
events,27 galled-trees,14 gt-networks,23 and level-1 phylogenetic networks.6,21
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Fig. 2. N1 is a galled network, while N2 is not. (The leaf labels have been omitted for clarity.)

orientations are ignored) are node-disjoint. For example, the phylogenetic network
in Fig. 1 and the network N1 in Fig. 2 are galled networks. From here on, we only
consider phylogenetic networks that are edge-weighted, i.e. where each edge has a
positive length. In analogy with the standard usage of the term “ultrametric” for
phylogenetic trees, we say that a galled network is ultrametric, if every directed
path from the root to a leaf has the same length.

For any rooted phylogenetic network N , an evolutionary path between two
leaves a and b is a simple path which goes up (i.e. moving in a child-to-parent
direction) from a to a common ancestor u of a and b, and then down (i.e. moving
in a parent-to-child direction) from u to b. It is observed that even if N is galled
and ultrametric, there can be more than one evolutionary path between a and b,
and moreover, these paths may have different lengths (again, see Fig. 1). However,
in an ultrametric galled network, there can exist at most two different evolutionary
path lengths between each pair of leaves, since each pair of leaves has at most two
different lowest common ancestors in N .

A distance matrix for a set S of n species is a symmetric, nonnegative (n× n)-
matrix M such that M(a, a) = 0 for every a ∈ S. Intuitively, for each a, b ∈ S,
M(a, b) contains the measured evolutionary distance between a and b. A rooted
phylogenetic network N for S satisfies M if, for every a, b ∈ S, it holds that N

contains an evolutionary path between a and b of length equal to M(a, b). In this
case, we also say that M is satisfied by N .
We are now ready to define the problem which is the main focus of this paper.

Problem statement: Given a distance matrix M for a set S of n species, return an
ultrametric galled network for S satisfying M , if one exists; otherwise, return fail.

Motivation: The rationale behind the way we define the problem is as follows.
There are a number of methods to estimate the evolutionary distance between two
species. One common approach is to align the DNA sequences for some related
genes from the species. The alignment score usually provides a reasonable estima-
tion on the evolutionary distance between the species. However, if recombination
events had occurred, there might exist more than one common ancestor (at different
evolutionary distances) for a pair of species. Thus, depending on which common
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ancestor the selected genes were inherited from, the measured evolutionary dis-
tance may reflect only one of the possible evolutionary paths. Therefore, for any
two species in the phylogenetic network, we only require one of their evolutionary
paths to satisfy the matrix entry.

If there are no restrictions on the topological structure of the constructed phylo-
genetic network, it may not make sense from a biological point of view. Therefore, we
concentrate on galled networks, a very useful class of rooted phylogenetic networks
which despite their simple structure are powerful enough to describe evolutionary
history when the frequency of recombination events is moderate or when most of
the recombination events have occurred recently.14 See Ref. 14 for a discussion on
the importance of galled networks. Finally, the biological meaning of the ultra-
metric assumption is that the species have evolved according to a constant rate;
see, e.g. Refs. 5, 9, 12, 26, 28 and the references therein for justification of this
assumption.

Our contributions: Our main result in this paper is an O(n2 log n)-time exact
algorithm to determine if there exists an ultrametric galled network satisfying a
given distance matrix M , and constructing such a network if one exists. When a
solution exists, our algorithm always outputs one having as few hybrid nodes as
possible. In practical studies, it is desirable to find the simplest explanation that
is consistent with the observed distances. Thus, although recombination events
(corresponding to hybrid nodes) may occur, it is crucial to find a satisfying network
containing the minimum number of hybrid nodes. On the other hand, given a matrix
M with no exact solution, we prove that finding a largest possible submatrix M ′

of M such that there exists an ultrametric galled network that satisfies M ′ is an
NP-hard problem. We also show that given an incomplete distance matrix (i.e.
where some matrix entries are missing), it is NP-hard to determine whether there
exists an ultrametric galled network which satisfies it.

Related work: In the context of reconstructing a phylogenetic network from dis-
tance data, the most related work is the Neighbor-Net method, developed by Bryant
and Moulton,4 which outputs a planar, unrooted phylogenetic network from a given
distance matrix. Neighbor-Net is based on the well-known Neighbor-Joining method
for trees.25 Earlier proposed distance-based methods for reconstructing phylogenetic
networks include those described in Ref. 8 and others described in Ref. 24. How-
ever, all of these approaches are heuristics-based and there is no guarantee that the
output is a phylogenetic network that satisfies the given matrix exactly, even when
a galled network exists. Also, Neighbor-Net runs in O(n3) time, which is slower
than the method we present here.

Some other models of computation for reconstructing phylogenetic networks
(i.e. assuming other types of input) are reviewed in Ref. 24. Recently, in addi-
tion to distance-based methods, researchers have also studied character-based and
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supertree-based methods for inferring phylogenetic networks. In character-based
methods, each species is represented by a set of characters obtained from, e.g. the
DNA sequences or morphological data. These methods work under a parsimony
framework and try to construct a network with the minimum number of evolution-
ary events; related work includes those described in Refs. 13, 14, 27. Supertree-
based methods assume that information concerning the evolutionary relationships
for some subsets of the species set is available (usually represented as a set of trees)
and then try to merge this input into a phylogenetic network; examples can be
found in Refs. 15, 17–20, 23.

To reconstruct a phylogenetic tree with n species consistent with a given distance
matrix (if one exists), can easily be done in O(n2) time (see Refs. 9, 12, 26). However,
when an exact solution does not exist, obtaining a tree that is as “close” as possible
to the matrix has been shown to be NP-hard on several closeness metrics.5,7,9,28

Organization of the paper: In Sec. 2, we first introduce some additional termi-
nology that is used throughout the paper to describe our techniques and results,
and then examine some fundamental structural properties of all valid solutions. In
Sec. 3, we present our efficient algorithm (whose design is based on the findings of
Sec. 2) for determining if there exists an ultrametric galled network satisfying M ,
and if so, constructing such a network. Next, we prove in Sec. 4 that the two related
problems mentioned above are NP-hard. Finally, we discuss an implementation of
our algorithm in Sec. 5. In Sec. 5, we also discuss how to extend our basic algorithm
to nonultrametric inputs.

2. Preliminaries

2.1. Terminology

Let N be a galled network. It should be remembered that a node h in N is called
a hybrid node, if the indegree of h is equal to 2. Let s be an ancestor of h such
that there are two edge-disjoint paths from s to h. Then s is called the split node
of h. In a galled network, each split node is a split node of exactly one hybrid node,
and each hybrid node has exactly one split node (see Lemma 1 in Ref. 21). The
two paths from s to h are the merge paths of h, and they form a galled loop rooted
at s. The galled loop rooted at s is skew, if one of its two merge paths consists of
a single edge from s to h; otherwise, it is nonskew. Nodes other than h and s on
the merge paths of h are called side nodes, and a node is called a tree node, if it
is not on any galled loop. For any node u in N , the subnetwork rooted at u is the
minimal subgraph of N including all nodes and directed edges reachable from u,
and is denoted by Nu. Finally, Nu is a side network, if the parent of u belongs to
a merge path P in N , but u itself is not on P .

For any internal node u of an ultrametric galled network N , every directed path
from u to a leaf under u has the same length. We call this length the height of u

and denote it by height(u). For any leaf a, height(a) = 0. It should be noted that
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the length of any edge (a, b) can be calculated from height(a) and height(b). Thus,
to find a network for M , we only need to determine the heights of all internal nodes
and the parent–child relations between nodes.

2.2. Basic structural observations

In any galled network, the smallest possible galled loop is skew and consists of
exactly three nodes (a split node, a hybrid node, and a side node). By simple
induction, one can prove that a galled network with n leaves contains at most
3n − 3 internal nodes. This property is useful to our algorithm.

Lemma 1. Let N be a galled network with n leaves. There are at most 3n − 3
internal nodes in N .

We now derive some properties of any ultrametric galled network satisfying the
given distance matrix M . For simplicity, we say that M is satisfiable, if there exists
an ultrametric galled network which satisfies it, and we refer to an ultrametric
galled network as a network. Also, for any S′ ⊆ S, if a network N for S′ satisfies
the submatrix of M induced by the species in S′, then we say that N satisfies S′.

Consider any two species a and b in S. To satisfy M , the network must contain
an evolutionary path between a and b with length equal to M(a, b). We notice that
this path starts from a, goes up to a common ancestor of height M(a, b)/2, and
then goes down to b. Let DS be the maximum distance between two species in S

as specified by M . If M is satisfiable, then there is a network satisfying M whose
root has height DS/2.

We have the following observation about the internal nodes of N .

Observation 1. Assume that M can be satisfied by a network N . For any node
u that is a tree node or a split node, let Nu be the subnetwork rooted at u, and let
Su be the set of species in Nu.

• For any two species a, b ∈ Su, M(a, b) = 2 × height(v) for some internal node v

in Nu, and hence M(a, b) ≤ 2 × height(u).
• For any species a ∈ Su and c ∈ S − Su, M(a, c) > 2 × height(u).

Observation 1 motivates the following definition.

Definition 1. For any set of species S′ ⊆ S, S′ is called a cluster, if there exists
a value x such that for any two species a, b ∈ S′, M(a, b) ≤ x and for any species
a ∈ S′ and c ∈ S − S′, M(a, c) > x.

S itself is the biggest cluster. It should be noted that clusters are nested, i.e.
two clusters are always either disjoint or one is a subset of the other. Observation 1
states that each tree node or split node in N induces a cluster. In fact, the reverse
is also true.
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Lemma 2. Assume that M can be satisfied by some network. Then there exists
such a network N ′ in which, for every cluster S′ ⊆ S, N ′ has a tree node or a split
node u such that all species in S′ are in the subnetwork N ′

u, and no species in S−S′

are in N ′
u.

A detailed proof of Lemma 2 is given in Sec. 2.3. To prove the lemma, we let N

be any network satisfying M . If N does not satisfy the conditions in Lemma 2, we
prove that we can always modify N to obtain another network N ′ which does, and
moreover, that N ′ has the same number of hybrid nodes as N .

We call a network satisfying the conditions in Lemma 2 a well-structured net-
work. Well-structured networks have the following very nice property. Consider any
S′ ⊆ S that is a cluster, and let S1, S2, . . . , St be all the maximal clusters which
are proper subsets of S′ (note that S′ = S1 ∪ S2 ∪ · · · ∪ St). We call S1, S2, . . . , St

the side clusters of S′. Then:

Lemma 3. Let S′ be a cluster with side clusters S1, . . . , St. Let N ′ be any well-
structured network satisfying S′ (w.r.t. the submatrix of M induced by S′). N ′ con-
sists of a root node u, with the networks satisfying S1, . . . , St attached to u, or
attached to a galled loop rooted at u.

Proof. Since N ′ is well-structured, for each side cluster Si, there is a tree node
or a split node v whose subnetwork contains all and only species in Si. We notice
that on the path from v to u, there is no tree node or split node other than u and
v (otherwise, let w be that intermediate node; the species under the subnetwork
rooted at w forms a cluster S′′ and Si � S′′ � S′, meaning that Si is not a side
cluster of S′). Thus, v is directly attached to u or a galled loop rooted at u. It means
that N ′ is formed by attaching the networks for S1, . . . , St to u, or to a galled loop
rooted at u.

2.3. Proof of Lemma 2

This subsection proves Lemma 2. (Readers who are interested in our algorithm may
skip ahead to the next section.) Let M be a matrix for a set S of n species, and let
N be a network satisfying M . We say that a cluster S′ ⊆ S occupies a tree node or
a split node u, if S′ is the set of species in the subnetwork rooted at u. Lemma 2
states that if M can be satisfied by some network N , then there is one such network
N ′ such that each cluster S′ occupies a tree node or a split node.

It should be remembered that a network which meets the conditions in Lemma 2
is called a well-structured network. The rest of this subsection is devoted to the proof
of the following lemma, which then immediately implies Lemma 2.

Lemma 4. Let N be a network satisfying the matrix M . If N is not well-
structured, we can modify N into a well-structured network N ′ satisfying M such
that N ′ has the same number of hybrid nodes as N .
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As mentioned below, suppose that N is a network satisfying M and that N is
not well-structured. Let S′ ⊆ S be a cluster such that S′ does not occupy a tree
node or split node in N , and let v be the node with minimum height such that the
subnetwork rooted at v contains all species from S′.

Lemma 5. v is a side node.

Proof. We prove the lemma by a simple case analysis:
If v is a hybrid node then the child of v is a node with smaller height whose

subnetwork contains all species from S′, which contradicts the definition of v.
If v is a split node, consider the galled loop rooted at v. This galled loop must

be non-skew (otherwise, the topmost side node on the galled loop has a smaller
height than v but contains all species in S′, which is a contradiction). Thus, there
are two species a, b ∈ S′ where a (resp. b) is in some side network attached to a
side node on the left (resp. right) merge path. The evolutionary path between a

and b has length 2×height(v), meaning that M(a, b) = 2×height(v) as N satisfies
M . For any species c in the subnetwork rooted at v, the evolutionary path between
a and c has length at most 2 × height(v), so M(a, c) ≤ M(a, b) and c belongs to
S′. Therefore, all species in the subnetwork rooted at v belong to S′, contradicting
that S′ does not occupy a split node.

Similarly, a contradiction occurs, if v is a tree node.
Combining the three cases, we conclude that v must be a side node.

Consider the galled loop containing v. Let s be the split node. Without loss of
generality, let v be a side node on the left merge path. Let h be the hybrid node
and let v1, v2, . . . , v� be the nodes on the merge path from h to v, where v1 is the
node immediately next to h and v� = v. For each i ∈ {1, 2, . . . , �}, denote the side
network attached to vi by S(vi). Define S(h) similarly.

Lemma 6. (i) For i ∈ {1, 2, . . . , �}, all species from S(vi) are in S′. (ii) Either
all species from S(h) are in S′, or none of the species from S(h) are in S′.

Proof. First, observe that there are two species a, b ∈ S′, where a is in the sub-
network under the left child of v, and b is in the subnetwork under the right child
of v. The evolutionary path between a and b has length at least 2 × height(v),
meaning that M(a, b) ≥ 2× height(v). It should be noted that for any species c, if
M(a, c) ≤ M(a, b), then c is in S′ due to the definition of a cluster.

(i) For any species c from S(vi), where i ∈ {1, 2, . . . , �}, the evolutionary path
between a and c has length at most 2×height(v). It means that M(a, c) ≤ M(a, b)
and c is in S′. Thus, all species from S(vi), for all i ∈ {1, 2, . . . , �}, are in S′.

(ii) If there is a species d ∈ S(h) which belongs to S′, let c be any other
species from S(h). Any evolutionary path between c and d has the highest node
below the hybrid node h, so the length is less than 2 × height(v). It means that
M(c, d) ≤ M(a, b) and c is in S′. Therefore, in this case, all species from S(h) are
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in S′. Hence, either all species from S(h) are in S′ or none of the species from S(h)
are in S′.

Lemma 7. If none of the species from S(h) are in S′, then we can modify N

to a new network N ′ such that N ′ satisfies S and S′ occupies a tree node in N ′.
Furthermore, every cluster that occupies a tree node or a split node in N still occu-
pies a tree node or a split node in N ′, and N ′ has the same number of hybrid
nodes as N .

Proof. Note that S(v1), S(v2), . . . , S(v�) together contain exactly all species from
S′. Also, � ≥ 2 (otherwise, S(v1) contains exactly all species from S′, and S′ occupies
the root of S(v1), which is a tree node or a split node). Since S(h) does not contain
any species from S′, for any species a ∈ S′ and c ∈ S(h), we have M(a, c) >

2 × height(v�) and M(a, c) = 2 × height(s). See Fig. 3 for an illustration.
We modify N into N ′ by merging the side networks S(v1), S(v2), . . . , S(v�) into

a single side network as shown in Fig. 3. More precisely, let v�+1 be the node on the
left merge path immediately above v� (possibly with v�+1 = s). We first create a
node w on the left merge path whose height equals (height(v�) + height(v�+1))/2.
Next, we remove the node v1 and all its incident edges. Finally, we insert an edge
from w to h, and an edge from v2 to the root of S(v1). Note that we do not
change the heights of any existing nodes. For any two species x and y, if there
is an evolutionary path between them with length α in N , then there is still an
evolutionary path between them with length α in N ′, except for the case that
x ∈ S′ and y ∈ S(h). In that case, N ′ still satisfies the distance requirement of
M(x, y) as M(x, y) = 2 × height(s). Thus, N ′ satisfies S and S′ occupies the tree

Fig. 3. If none of the species from S(h) are in S′, we can modify N to obtain another network N ′
which is well-structured.



October 5, 2006 19:18 WSPC/185-JBCB 00221

816 H.-L. Chan et al.

node v�. Furthermore, it is straightforward to verify that if a cluster occupies a tree
node or split node in N , the cluster still occupies the same node in N ′.

Lemma 8. If all species from S(h) are in S′, then we can modify N to a new
network N ′ such that N ′ satisfies S and S′ occupies a tree node in N ′. Furthermore,
every cluster that occupies a tree node or split node in N still occupies a tree node
or split node in N ′, and N ′ has the same number of hybrid nodes as N .

Proof. Observe that S(v1), S(v2), . . . , S(v�) and S(h) together contain exactly all
species from S′. Since all species from S(h) are in the cluster S′, for any species a ∈
S(vi), where, i ∈ {1, 2, . . . , �} and any species b ∈ S(h), M(a, b) ≤ 2 × height(v�).
Furthermore, there is an evolutionary path between a and b in N which does not
pass through s and has length equal to M(a, b). Let u1, u2, . . . , ur be the nodes
on the right merge path, where u1 is the node immediately above h and ur =
s (note that if the galled loop is skew, we have u1 = ur = s). There are two
cases: (1) height(v�) < height(u1); and (2) height(v�) ≥ height(u1).

(1) If height(v�) < height(u1), we can modify N into N ′ as shown in
Fig. 4. To be precise, first create a node w on the left merge path with height
(min{height(u1), height(v�+1)} + height(v�))/2, where v�+1 is the node immedi-
ately above v� on the left merge path. Next, remove h and all its incident edges.
Finally, insert an edge from u1 to w, and an edge from v1 to the root of S(h). It
should be noted that N ′ is a valid network. Furthermore, for any pair of species
x, y ∈ S, by checking the cases of whether x, y are in S′, it is easy to see that N ′

satisfies S, and moreover, S′ occupies the tree node v� in N ′. Also, every cluster

Fig. 4. If all species from S(h) are in S′ and height(v�) < height(u1), we can modify N to obtain
another network N ′ which is well-structured.
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Fig. 5. If all species from S(h) are in S′ and height(v�) ≥ height(u1), we can modify N to obtain
another network N ′ which is well-structured.

that occupies a tree node or a split node in N still occupies a tree node or a split
node in N ′. Thus, N ′ is a network satisfying the lemma.

(2) If height(v�) ≥ height(u1), let uk be the lowest node on the right merge
path such that height(v�) < height(uk). Let a be a species from S(h) and let
c be a species from S(ui), where i ∈ {1, 2, . . . , k − 1}. a is in the cluster S′,
while c is not. Thus, M(a, c) > 2 × height(v�) ≥ 2 × height(ui), meaning that
M(a, c) = 2 × height(s). Then, we can modify N into a network N ′ as shown in
Fig. 5. More precisely, first create a node w on the left merge path with height
(min{height(uk), height(v�+1)} + height(v�))/2, where v�+1 is the node immedi-
ately above v� on the left merge path. Then, create a node w′ on the right merge
path with height equal to (height(uk) + height(w))/2. Next, remove h and u1 and
all their incident edges. Finally, insert an edge from w′ to w, an edge from v1 to the
root of S(h), and an edge from u2 to the root of S(u1). It should be noted that N ′

is a valid network. Furthermore, for any pair of species x, y ∈ S, by checking the
cases of whether x, y are in S′ or in S(ui), i ∈ {1, 2, . . . , k − 1}, it is easy to verify
that N ′ satisfies S. Also, S′ occupies the tree node v� in N ′, and every cluster that
occupies a tree node or a split node in N still occupies a tree node or a split node
in N ′. Thus, N ′ is a network satisfying the lemma.

Finally, we can prove Lemma 4.

Proof of Lemma 4. Given a network N that satisfies the matrix M . If N is not
well-structured, we pick any cluster that does not occupy any tree node or split node
in N . We modify N according to Lemma 7 or 8. There are at most 2n− 1 different
clusters and each round of modification causes at least one more cluster to occupy
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a tree node or a split node. Thus, after at most 2n − 1 rounds of modification, we
will obtain a network that is well-structured, and has the same number of hybrid
nodes as N .

3. The Algorithm

In this section, we present our O(n2 log n)-time algorithm for determining if there
exists an ultrametric galled network satisfying a given (n×n)-distance matrix M for
a set S of n species, and constructing such a network if one exists. (In fact, whenever
a solution exists, the algorithm will always output a well-structured network.) The
algorithm is named GalledNet. We first give an outline of the algorithm and analyze
its overall running time in Sec. 3.1. Then, in Sec. 3.2, we present the more technical
details of Step 2c (procedure ConnectingSideClusters). Next, in Sec. 3.3, we prove
that any network constructed by GalledNet is optimal in the sense that it has
the minimum number of hybrid nodes among all possible networks satisfying M ,
including all well-structured and all nonwell-structured networks.

For short, we say network to refer to an ultrametric galled network.

3.1. Framework of the algorithm

According to Lemma 2, if M can be satisfied by some network then there exists
a well-structured network which satisfies M . Therefore, in the following, we only
consider well-structured networks and show how to find a well-structured network
for S that satisfies M , if one exists.

Lemma 3 states that we can construct a network for a cluster by connecting
the networks for its side clusters. Thus, our algorithm takes a bottom-up approach,
which continuously identifies subsets of S that are clusters, starting from smaller
ones to bigger ones. It maintains an invariant that as soon as a cluster S′ is found,
a subnetwork satisfying S′ is constructed. For the base case, a set containing only
a single species is a cluster, and the corresponding network is a single leaf for this
species. Since S is the biggest cluster, the algorithm will eventually find a network
satisfying S.

To efficiently identify and keep track of clusters, our algorithm uses an auxiliary
graph G as follows. Initially, G consists of n isolated nodes, each representing a
species in S. Edges which represent the distance among the species are added in
rounds, where two nodes u, v will be connected by an edge of length M(u, v).
In the ith round, all edges with the ith shortest length are added. Suppose that
after the ith round, a connected component of G becomes a clique. Then, the
species inside this connected component form a cluster for which a network is built
immediately.

The algorithm is named GalledNet and is outlined below. A detailed explanation
of how to construct a network for a cluster, i.e. Step 2c, is provided in Sec. 3.2.
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Algorithm 1 GalledNet

1: [Step 1.] Sort the entries in M and let m1 < m2 < · · · < mr be the distinct positive
values in M . If r > 3n − 3, return failure.

2: [Step 2.] Build the networks while inserting edges into the auxiliary graph G.
Initially, G contains n isolated nodes representing the n species. For i = 1, 2, . . . , r,
a. Add all edges of length mi to G.
b. Identify all newly formed cliques.
c. For each new clique, let S′ ⊆ S be the corresponding cluster. Run the pro-

cedure ConnectingSideClusters (described in Sec. 3.2) which constructs a
network satisfying S′, if S′ is satisfiable. This is done by creating a new inter-
nal node u, and attaching the networks for side clusters of S′ to u, or to a
galled loop rooted at u.

It should be noted that Algorithm GalledNet terminates immediately, if there
are more than 3n−3 different positive values in M . The reason is that any galled net-
work for n species can contain at most 3n−3 internal nodes according to Lemma 1,
and the length of any evolutionary path is 2× height(u) for some internal node u.
Thus, if there are more than 3n − 3 distinct positive values in M , no network can
satisfy M .

We analyze the running time of GalledNet as follows. Step 1 takes O(n2 log n)
time. Step 2a takes O(n2) time over the whole algorithm. With some straightforward
bookkeeping (which takes O(1) time for each edge added), Step 2b can be done in
O(n) time in each iteration and O(n2) time in total. We will show in Sec. 3.2 that
Step 2c, which calls ConnectingSideClusters, takes a total of O(n2) time. Thus, the
whole algorithm takes O(n2 log n) time.

To summarize:

Theorem 9. Algorithm GalledNet determines if there exists an ultrametric galled
network satisfying M, and if so, constructs such a network, in O(n2 log n) time.
Moreover, any network constructed by Algorithm GalledNet is well-structured.

3.2. Attaching side clusters to a galled loop

This subsection explains how to perform Step 2c of GalledNet. Let S be a satisfiable
cluster with side clusters S1, S2, . . . , St. Suppose that we have constructed side
networks for these side clusters. As mentioned below, we overload Si to also denote
the side network corresponding to side cluster Si, and for convenience, we denote
the height of the root node of this subnetwork by height(Si). To build a network
for S, we need to determine how its side networks S1, S2, . . . , St should be attached
to a new root node or to a galled loop, and compute the heights of the new root
and all nodes on the galled loop.

First, we consider the simple case when t = 2. Suppose that the distance matrix
of S contains c ≥ 1 distinct distances {d1, d2, . . . , dc} between a species in S1 and
a species in S2. It should be remembered that S can be satisfied by a network with
S1 and S2 attached either to a root or to a galled loop. The first case implies that
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c = 1, and in the latter case c = 2. Thus, we do not need to consider c bigger
than 2.

Lemma 10. Assume that S contains only two side clusters S1 and S2.

• If c = 1, then S can be satisfied by a network N in which both S1 and S2 are
attached to a root u and height(u) = d1/2.

• Assume c = 2 and d1 < d2. Then S can be satisfied by a network N with a
(skew) galled loop containing a root u, a side node v and a hybrid node h such
that S1 is attached to h and S2 to v, and height (u) = d2/2; height(v) = d1/2;
height(h) = α, where α is any value in the range (height (S1), d1/2).

Proof. If c = 1, the distance from any species in S1 to any species in S2 is exactly
d1. The network N constructed in the lemma can obviously satisfy the distance
matrix of S.

For c = 2, consider the network constructed in the lemma. It should be noted
that the distance from any species in S1 to any species in S2 can only be d1 or
d2. If the distance is d1, then the shorter evolutionary path that passes through h

and v satisfies the distance. Otherwise, if the distance is d2, the evolutionary path
passing through h, u, and v satisfies the distance.

The rest of this subsection is devoted to the general case where S has three
or more side clusters, i.e. t ≥ 3. In this case, we need to build a galled loop to
accommodate the corresponding side networks Si’s. We focus on the network N

that satisfies S and we show that the structure of N can be determined from
the relations between the side clusters. It should be remembered that N has a
galled loop at the top. Let Sh be the side cluster attached to the hybrid node.
Let LEFT(Sh) be the group of side clusters attached to the side nodes on the
left merge path. Define RIGHT(Sh) similarly. The following lemma tells how to
identify the side clusters in the two groups. For simplicity, we say a species a is
in LEFT(Sh) (resp. RIGHT(Sh)), if a belongs to some side cluster in LEFT(Sh)
(resp. RIGHT(Sh)).

Lemma 11 (Partitioning the side clusters according to the two merge
paths). Let DS be the maximum distance between two species in S. (i) For any
two species a, b in LEFT(Sh), M(a, b) < DS ; similarly, for any two species a, b

in RIGHT(Sh), M(a, b) < DS ; and (ii) for any species a in LEFT(Sh) and c in
RIGHT(Sh), M(a, c) = DS.

Proof. (i) Consider two species a, b in the same group (i.e. either LEFT(Sh) or
RIGHT(Sh)). If a and b belongs to different side clusters, the highest node on their
evolutionary path must be some side node on the corresponding merge path, whose
height is less than the split node. The height of the split node is DS/2, so M(a, b),
which equals the length of the evolutionary path, is less than DS . The case for a

and b belonging to the same side cluster is obvious.
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(ii) For any two species a, c in different groups, the highest node on their evolu-
tionary path must be the root of N . Thus, M(a, c), which equals the length of the
evolutionary path, is exactly DS .

Assume that LEFT(Sh) contains � side clusters, and that their side networks
are attached to side nodes v1, v2, . . . , v� on the left merge path of N , where vi is the
ith node from the hybrid node. Let r be the root. Denote the side cluster (as well as
the side network) attached to vi by S(vi). That is, LEFT(Sh) = {S(vi) | 1 ≤ i ≤ �}.

The following lemmas provide some structural characteristics of each side net-
work S(vi), which allow us to identify them easily. For each side cluster S′ of S, let
inter dist(S′) denote the minimum distance M(x, y) between a species x in S′ and
a species y in S − S′.

Lemma 12 (Identifying the order of side clusters). (i) inter dist(S(v1)) ≤
inter dist(S(v2)), and inter dist(S(v2)) < inter dist(S(v3)) < · · · < inter dist

(S(v�));
(ii) height (vi) = inter dist(S(vi))/2 for i = 2, . . . , �.

Proof. We prove (ii) first. For any i = 2, . . . , �, for any species a ∈ S(vi) and
any species b ∈ S − S(vi), the evolutionary path between a and b passes the node
vi. Thus, M(a, b), which equals the length of some evolutionary path, is at least
2 × height(vi). It means that inter dist(S(vi)) ≥ 2 × height(vi). On the other
hand, for any species a in S(vi) and any species c in S(v1), the highest node on
the evolutionary path between a and c must be vi. Thus, M(a, c) = 2× height(vi),
meaning that inter dist(S(vi)) ≤ 2 × height(vi). This completes the proof.

For (i), for any species a in S(v1) and any species b in S(v2), the highest node
on their evolutionary path must be v2. Thus, inter dist(S(v1)) ≤ 2× height(v2) =
inter dist(S(v2)). inter dist(S(v2)) < inter dist(S(v3)) < · · · < inter dist(S(v�))
follows directly from (ii).

Lemma 12(i) allows us to identify which side cluster in LEFT(Sh) is attached to
each vi, except when inter dist(S(v1)) = inter dist(S(v2)). In this case, we exploit
the relationship with Sh to distinguish the side clusters attached to v1 and v2. It
should be noted that a species x in S(v2) and a species y in Sh are connected by
two evolutionary paths, with r and v2 as the highest node, respectively. Since N

satisfies S, the distance of x and y (i.e. M(x, y)) must equal the length of either
path, i.e. 2 × height(r) or 2 × height(v2). The latter value is strictly less than
2 × height(r) = DS .

Lemma 13 (Resolving ambiguity). (i) If inter dist(S(v1)) = inter dist

(S(v2)), then S(v2), but not S(v1), contains a species x whose distance to some
species y in Sh (i.e. M(x, y)) is less than DS , and height(v1) can be any value in
the range (height(Sh), inter dist(S(v2))/2).
(ii) Otherwise, height(v1) = inter dist(S(v1))/2.
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Proof. (i) Note that height(v1) < height(v2). If S(v1) contains a species x whose
distance to some species y in Sh is less than DS , then inter dist(S(v1)) = 2 ×
height(v1) < 2 × height(v2) = inter dist(S(v2)), which leads to a contradiction. If
S(v2) does not contain a species x with the required property, then any species x

in S(v1)∪S(v2) and any species y in S −S(v1)∪S(v2) have distance (i.e. M(x, y))
greater than 2 × height(v2). It means that S(v1) ∪ S(v2) is a cluster, which leads
to a contradiction that S(v1) and S(v2) are not side clusters of S (i.e. maximal
clusters contained by S).

Since any species x in S(v1) and any species y in Sh have distance exactly DS ,
the evolutionary paths with highest node at the root will satisfy M(x, y). Thus,
height(v1) can be any value in (height(Sh), inter dist(S(v2))/2), and the resulting
network is valid and still satisfies the distance requirement between a species in
S(v1) and a species in S − S(v1).

(ii) This is the case for inter dist(S(v1)) < inter dist(S(v2)). Note that
inter dist(S(v1)) is either DS or 2 × height(v1), and DS is not less than
inter dist(S(v2)). Thus, inter dist(S(v1)) = 2 × height(v1) and the lemma
follows.

The above lemmas explain how the side clusters are attached to the merge paths,
once the side cluster under the hybrid node is known. The following lemma shows
that we can in fact find the side cluster attached to the hybrid node easily.

Lemma 14 (Finding Sh). (i) inter dist(Sh) ≤ inter dist(Si) for any side clus-
ter Si of S; and (ii) there can be at most five side clusters Si of S such that
inter dist(Si) = inter dist(Sh).

Proof. (i) We will first show that inter dist(Sh) ≤ inter dist(S(v1)). We consider
the two cases of Lemma 13. If inter dist(S(v1)) = inter dist(S(v2)), then there is a
species x in S(v2) whose distance to some species y of Sh is 2×height(v2), meaning
that inter dist(Sh) ≤ inter dist(S(v2)) = inter dist(S(v1)). If inter dist(S(v1)) <

inter dist(S(v2)), then there is a species x in S(v1) whose distance to some species
y of Sh is 2 × height(v1), meaning that inter dist(Sh) ≤ inter dist(S(v1)). Thus,
inter dist(Sh) is no greater than inter dist(Si) for all side clusters Si in LEFT(Sh).
We can repeat the same argument for side clusters in RIGHT(Sh), and conclude
that inter dist(Sh) ≤ inter dist(Si) for all side cluster Si of S.

(ii) There are at most two side clusters in LEFT(Sh) (which are S(v1) and S(v2))
having the minimum inter dist value as Sh. The same is true for side clusters in
RIGHT(Sh). Together with Sh itself, there are at most five side clusters Si such
that inter dist(Si) = inter dist(Sh).

On the basis of the above lemmas, we can construct a galled loop to connect the
side clusters for S, as follows. By Lemma 14, there are at most five candidates for
the side cluster attached to the hybrid node. We try to build the network using each
of the candidate according to Lemmas 11–13. We verify each network constructed
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and return the one that satisfies S. The details of the algorithm are shown below.
It builds a network for S, if and only if S is satisfiable.

Algorithm 2 ConnectingSideClusters (S, S1, S2, . . . , St)
1: [Step 1.] If S has only two side clusters, i.e. t = 2, construct the network according

to Lemma 10.

2: [Step 2.] Otherwise, find inter dist(Si) for each side cluster Si and sort the side

clusters according the inter dist value. If there are more than five side clusters

having the minimum inter dist value, return failure. Otherwise, for each side clus-

ter Sh with the minimum inter dist value, try to build a network which attaches

Sh to hybrid node, as follows.

a. Divide the remaining side clusters into two groups LEFT(Sh) and RIGHT(Sh)

that satisfy Lemma 11.

b. Sort the side clusters in LEFT(Sh) according to the inter dist value and attach

the side clusters to the left merge path according to Lemmas 12 and 13. Repeat

it for the side clusters in RIGHT(Sh).

c. Let hl and hr be the lowest side node on the left and right merge path, respec-

tively. Set height(h) to any value in (height(Sh), min{hl, hr}).
d. Verify that for every pair of species a, b, there is an evolutionary path between

a and b with distance M(a, b). Return the network if this condition is true.

3.2.1. Implementation of ConnectingSideClusters

It is straightforward to implement the procedure ConnectingSideClusters(S, S1,
S2, . . . , St) in O(t log t+φ) time, where φ is the number of species pair (x, y) where
x and y are species belonging to two different side clusters of S. The key ideas for
the procedure are given in the following.

• Finding inter dist(Si) for all side clusters can be done by checking M(x, y) for
all species x, y that belongs to different side clusters, which takes O(φ) time.

• For Step 2a, we arbitrarily pick a side cluster Si to LEFT(Sh). For each other
side cluster Sj , we put Sj to RIGHT(Sh) if some species in Si has distance DS

with some species in Sj; and put Sj to LEFT(Sh) otherwise. Then, we verify
if the partition satisfies Lemma 11, by checking M(x, y) for every species x, y

belonging to different side clusters.
• For Step 2d, for any two species x and y belonging to different side clusters,

the length of their evolutionary paths can be calculated in O(1) time, so the
total verification time is O(φ). We do not need to check the distance for species
within the same side cluster, because the side network for the side cluster already
satisfies the required distance.

To measure the total running time of all procedure calls to ConnectingSideClus-
ters over the whole execution of GalledNet, we need the following lemma.

Lemma 15. Let T be the total number of side clusters considered by all procedure
calls to ConnectingSideClusters over the whole execution of GalledNet, and let Φ be
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the total number of species pairs considered by all calls to ConnectingSideClusters
that belong to two different side clusters. It holds that T ≤ 2n− 1 and Φ ≤ n(n−1)

2 .

Proof. It should be remembered that the input to GalledNet is a matrix M for a
set of n species. Because clusters are nested, there can be at most 2n − 1 different
clusters. Throughout the execution of GalledNet, each cluster will be counted as a
side cluster of another cluster only once, so T ≤ 2n − 1.

It should be noted that the species pairs considered by different calls to Con-
nectingSideClusters are disjoint, and there are only n(n−1)

2 different species pairs,
so Φ ≤ n(n−1)

2 .

Thus, the total running time for ConnectingSideClusters over the whole execu-
tion of GalledNet is O(n log n + n(n−1)

2 ) = O(n2).

3.3. The minimality of the number of hybrid nodes

Here, we prove that the network for M produced by GalledNet has the mini-
mum number of hybrid nodes among all networks satisfying M . We begin with the
following observation.

Lemma 16. The network produced by GalledNet has the minimum number of
hybrid nodes among all well-structured networks satisfying M .

Proof. Let N be the well-structured network produced by GalledNet and let N ′

be any well-structured network satisfying M . For any cluster S′ ⊆ S, let N(S′) be
the smallest subnetwork in N containing all species in S′. Define N ′(S′) similarly.
Since N and N ′ are well-structured, both N(S′) and N ′(S′) contain exactly all
species in S′. On the basis of the definition of the procedure ConnectingSideClus-
ters, it can be easily proved by induction that N(S′) has no more hybrid nodes
than N ′(S′). Thus, when S′ = S, we conclude that N has no more hybrid nodes
than N ′.

Next, let N∗ be a network satisfying M with the minimum number of hybrid
nodes. In case N∗ is not well-structured, according to Lemma 4, we can always
transform N∗ into a well-structured network satisfying M with the same number
of hybrid nodes. Thus, we obtain the following theorem.

Theorem 17. Given a satisfiable matrix M, the network produced by GalledNet
has the minimum number of hybrid nodes among all networks satisfying M .

4. NP-Hardness Results

In this section, we prove that two problems related to reconstructing an ultrametric
galled network from a given distance matrix are NP-hard. We first show a useful
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lemma. In the following, we say that a distance matrix M admits an ultrametric
galled network, if there exists such a network which satisfies M .

Lemma 18. Let M be a distance matrix for a set S. If there exist a, b, c, d ∈ S

such that M(a, b) = M(a, c) = M(a, d) = M(b, c) = M(b, d) = M(c, d) then M

does not admit any ultrametric galled network.

Proof. Suppose M admits an ultrametric galled network. Write X = M(a, b).
Since M(a, b) = M(a, c) = M(b, c) and every internal node in a galled network has
degree at most two, the leaves a, b, c must belong to three different side networks
of some split node having height X

2 , where one leaf (without loss of generality,
assume b) is a descendant of a hybrid node h and the other two leaves belong to
two different merge paths. If d is a descendant of h, then M(b, d) < X , which is
impossible. Thus, d must be attached to the same merge path as one of a and c.
But then, either M(a, d) < X or M(c, d) < X , which is a contradiction. Thus, M

does not admit any ultrametric galled network.

4.1. NP-hardness of finding a maximum submatrix admitting

an ultrametric galled network

Here, we prove that finding a maximum submatrix M ′ of a given distance matrix M

such that M ′ admits an ultrametric galled network is an NP-hard problem. Our
proof consists of a polynomial-time reduction from the independent set problem
which is known to be NP-hard (see Ref. 11).

4.1.1. The independent set problem

Instance: An undirected graph G = (V, E) and a positive integer I ≤ |V |.
Question: Is there a subset V ′ of V with |V ′| = I such that V ′ is an independent

set, i.e. such that no two vertices in V ′ are joined by an edge in E?

4.1.2. The maximum submatrix admitting an ultrametric galled network
problem, decision problem version (MSGN-d)

Instance: A set S, a distance matrix M for S, and a positive integer K ≤ |S|.
Question: Is there a subset S′ of S with |S′| = K such that M restricted to S′

admits an ultrametric galled network?

The following shows the reduction of the independent set problem to MSGN-d.
Let (G, I) be any given instance of the independent set problem. For convenience,
write n = |V | and V = {v1, v2, . . . , vn}. Construct an instance (S, M, K) of MSGN-d
as follows. Let S, = V ∪ P ∪ Q, where P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn}
are two disjoint sets of elements not in V , and set K = I + 2n. Next, let M be a
distance matrix for S satisfying, for every i, j ∈ {1, 2, . . . , n}: M(pi, pj) = max{i, j};
M(qi, qj) = max{i, j}; M(pi, qj) = n + 1; M(vi, vj) = max{i, j} if the edge {vi, vj}
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does not belong to E and M(vi, vj) = n + 1 if the edge {vi, vj} belongs to E;
M(vi, pj) = n + 1; and M(vi, qj) = n + 1.

Lemma 19. M has a submatrix of size K×K which admits an ultrametric galled
network if and only if G has an independent set of size I.

Proof. Suppose that G has an independent set W of size I. Let S′ = W ∪ P ∪ Q

and let M ′ be the (K × K)-submatrix of M induced by S′. Let CP be the binary
caterpillar treeb whose leaves are labeled (in the order of nonincreasing distance
from the root) by p1, p2, . . . , pn. For each internal node u of CP , set the height of u

equal to i
2 , where pi is the leaf descendant of u with the maximum index. Define

CQ and CW analogously (using Q and W , respectively). Now, let N ′ be a galled
network consisting of a root node at height n

2 + 1
2 having two children s and t, both

at height n
2 + 1

4 . Let s be the parent of CP and a hybrid node h, and let t be the
parent of CQ and h. Finally, let h be the parent of CW and set the height of h to
n
2 + 1

8 . It is easy to verify that N ′ satisfies M ′ and that N ′ is ultrametric.
Conversely, suppose there exists a subset S′ of S of size K such that the sub-

matrix of M induced by S′ admits an ultrametric galled network. Since K > 2n,
S′ contains at least one element pi from P and at least one element qj from Q.
Next, observe that for each {vx, vy} ∈ E, we have M(vx, vy) = n + 1, while
M(vx, pi) = M(vx, qj) = M(vy, pi) = M(vy, qj) = M(pi, qj) = n+1. By Lemma 18,
at most one of x and y can be included in S′. Thus, W = S′ ∩ V is an independent
set in G and |W | ≥ K − 2n = I.

Hence, MSGN-d is NP-hard and it follows that MSGN is NP-hard.

Theorem 20. MSGN is NP-hard.

4.2. NP-hardness of the incomplete distance matrix case

Next, we prove that it is NP-hard to determine whether a given incomplete distance
matrix admits an ultrametric galled network. For the reduction, we make use of the
NP-hard 3-coloring problem (see Ref. 11).

4.2.1. 3-coloring

Instance: A connected, undirected graph G = (V, E).
Question: Can G be 3-colored, i.e. can V be partitioned into three disjoint subsets

in such a way that E contains no edge between two vertices in the same
subset?

bA caterpillar tree is a rooted tree such that every internal node has at most one child which is
not a leaf (see, e.g. Ref. 3).
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4.2.2. The incomplete distance matrix admitting an ultrametric galled
network problem (IDGN)

Instance: A set S and an incomplete distance matrix M (i.e. where some entries
are missing) for S.

Question: Is there an ultrametric galled network which satisfies all of the
nonempty entries in M?

Let G be any given instance of 3-coloring with at least two vertices. Construct an
instance (S, M) of IDGN by setting S = V and defining the (|S| × |S|)-matrix M

as follows: for every i ∈ V , let M(i, i) = 0; and for every edge {i, j} ∈ E, let
M(i, j) = M(j, i) = 1. For every pair of vertices i, j in V such that {i, j} �∈ E, leave
the matrix entries M(i, j) and M(j, i) empty.

Lemma 21. G is 3-colorable if and only if there exists an ultrametric galled net-
work which satisfies all of the nonempty entries in M .

Proof. Suppose G is 3-colorable. Partition V into three disjoint subsets V1, V2, V3

such that each Vi is an independent set and build an ultrametric galled network N

as follows. Let the root node r of N have height 1
2 , and let r’s two children s and t

have height 1
4 . Let s and t be the parents of a hybrid node h with height 1

8 . For
k ∈ {1, 2, 3}, build an arbitrary tree Tk distinctly leaf-labeled by Vk. Attach T1 as
a child of s, T2 as a child of h, and T3 as a child of t, and assign arbitrary valid
heights to the internal nodes of each Ti so that the resulting N is ultrametric. Now,
every nonempty matrix entry in M equal to 0 is of the form M(i, i) and, therefore,
trivially satisfied by N . Next, consider any nonempty matrix entry M(i, j) with
i �= j. By the construction above, we have M(i, j) = 1, and furthermore, E must
contain the edge {i, j}. This means that i and j belong to different sets Vk and
thus different side networks in N , so there exists a path of weight 1 in N from i

to j passing through r. Therefore, all nonempty matrix entries in M are satisfied
by N .

Now, we want to show that if there exists an ultrametric galled network which
satisfies all of the nonempty entries in M , then G is 3-colorable. Let N be an
ultrametric galled network that satisfies all the nonempty entries in M with the
minimum possible number of hybrid nodes, let r be the root of N , and denote the
two children of r by c1 and c2. It should be noted that it is not possible to have
height(r) < 1

2 , since |V | ≥ 2 and G is connected. As mentioned below, we describe
how to use N to construct a partition (V1, V2, V3) of V which induces a 3-coloring
of G. There are two cases:

• r is not a split node. In this case, the height of r is always equal to 1
2 . (To see this,

suppose on the contrary that height(r) > 1
2 . Pick any leaf descendant a of c1 and

any leaf descendant b of c2, and consider any path p0(= a), p1, p2, . . . , px(= b) in G

connecting a and b. By the construction of M , M(pi−1, pi) = 1 for all 1 ≤ i ≤ x,
which implies that for every 1 ≤ i ≤ x, pi is contained in the subnetwork rooted
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at c1, contradicting that b is contained in the subnetwork rooted at c2.) Let V1

and V2 be the (disjoint) sets of leaf descendants of c1 and c2, respectively, and
let V3 = ∅.

• r is a split node. Denote the hybrid node corresponding to r by h, and observe that
height(h) < 1

2 (if not, then by removing one edge ending at h and then for every
node with resulting outdegree 1, contracting its outgoing edge, we would obtain
another galled network with one less hybrid node than N which still satisfies M ,
contradicting the minimality of N). Define V1 as the set of leaf descendants of h

and let P and Q be the two merge paths from r to h. Define V2 as the union of:
(1) the set of leaf descendants of side networks attached to P at nodes with height
greater than or equal to 1

2 ; and (2) the set of leaf descendants of side networks
attached to Q at nodes with height less than 1

2 that were not already included
in V1. Finally, define V3 in the same way as V2, but using the upper part of Q

and the lower part of P .

In either case, for any two vertices a, b in the same subset Vi, the distance in N

between a and b is never equal to 1, which gives us {a, b} �∈ E. Hence, each Vi forms
an independent set in G, i.e. G is 3-colorable.

Hence, the following theorem follows.

Theorem 22. IDGN is NP-hard.

5. Concluding Remarks

In this paper, we have introduced the problem of inferring an ultrametric galled
network that satisfies a given distance matrix, and provided an efficient algorithm
named GalledNet to solve it. Moreover, we have shown that two closely related
problems are NP-hard.

We have implemented GalledNet using Java on a PC with a standard config-
uration (2.4 GHz with 512MB memory).c To visualize the constructed network,
we make use of two freely available graph drawing tools: Graph Visualization
(Graphviz1) and Visualizing Graphs with Java (VGJ2). We output the network
from our program in two representations, the dot language10 and the graph model-
ing language (GML16), which are the input formats for Graphviz and VGJ, respec-
tively. A sample output produced by Graphviz with 15 species is given in Fig. 6.
The program is fast and can produce the output in seconds for a few dozens of
species.

As a remark, in real cases, the input distance matrix might not be satisfiable
by any ultrametric galled network due to the following. The estimation of the
evolutionary distance based on alignment scores may not be accurate, or there may
be errors in the sequences of the selected genes. Also, the set of selected genes

cThe programs are available upon request.
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Fig. 6. A sample output for 15 species.

might not all have evolved from the same common ancestor. Thus, the estimated
evolutionary distance between two species may not correspond exactly to the length
of an evolutionary path between them. On the other hand, it is likely that the
estimated distance between any pair of species should fall between the lengths of
the shortest and longest evolutionary paths connecting them. To handle this issue,
one can extend our problem to construct an ultrametric galled network N from the
given distance matrix M such that for every pair a, b of species, the interval defined
by the lengths of the shortest and longest evolutionary paths between a and b in N

contains the value of M(a, b).
Algorithm GalledNet can be modified to report such a network, if one exists.

For the case of nonultrametric inputs, the major observation is that Lemma 2 still
holds. That is, every cluster will still occupy a split node or tree node. Thus, we
can solve the new problem by following the same bottom-up approach as in Sec. 3,
but removing the old stopping condition in Step 1 and relaxing the requirements
for combining side clusters into a galled loop in procedure ConnectingSideClusters
as follows. Like before, Sh must have minimum inter dist and we only need to test
at most five candidates for the side cluster attached to the hybrid node in Step 2
because Lemma 14 is still true. In Steps 2a and 2b, we divide the side clusters and
sort them as before (Lemmas 11 and 12 still hold); however, resolving ambiguity
requires a relaxed Lemma 13:

(i) If inter dist(S(v1)) = inter dist(S(v2)), then we cannot resolve the ambigu-
ity, and swapping the positions of the two side clusters still yields a network
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satisfying the distance matrix. In this case, height(v1) can be any value in the
range (height(Sh), inter dist(S(v2))/2).

(ii) Otherwise, height(v1) = inter dist(S(v1))/2.

In the last step of ConnectingSideClusters, we verify every constructed network
using the relaxed requirement.
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