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Abstract. The dynamic trie is a fundamental data structure which finds
applications in many areas. This paper proposes a compressed version
of the dynamic trie data structure. Our data-structure is not only space
efficient, it also allows pattern searching in o(|P |) time and leaf inser-
tion/deletion in o(log n) time, where |P | is the length of the pattern and
n is the size of the trie. To demonstrate the usefulness of the new data
structure, we apply it to the LZ-compression problem. For a string S
of length s over an alphabet A of size σ, the previously best known
algorithms for computing the Ziv-Lempel encoding (lz78) of S either
run in: (1) O(s) time and O(s log s) bits working space; or (2) O(sσ)
time and O(sHk + s log σ/ logσ s) bits working space, where Hk is the k-
order entropy of the text. No previous algorithm runs in sublinear time.
Our new data structure implies a LZ-compression algorithm which runs
in sublinear time and uses optimal working space. More precisely, the
LZ-compression algorithm uses O(s(log σ +log logσ s)/ logσ s) bits work-
ing space and runs in O(s(log log s)2/(logσ s log log log s)) worst-case time,

which is sublinear when σ = 2
o(log s

log log log s

(log log s)2
)
.

1 Introduction

A trie [7] is a rooted tree in which every edge is labeled by a symbol from an
alphabet A in such a way that for every node u and every a ∈ A, there is
at most one edge from u to a child of u that is labeled by a. (From here on,
we assume A is fixed and define σ = |A|.) Each leaf � in the trie represents a
string obtained by concatenating the symbols on the unique path from the root
to �; thus, a trie can be used to store a set of strings over A. A dynamic trie is a
fundamental data structure allowing operations to modify it dynamically, i.e., al-
lowing strings to be inserted or deleted from the trie. It find applications in many
areas including information retrieval, natural language processing, database sys-
tems, compilers, data compression, and computer networks. As an example, in
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computer networks, dynamic tries are used in IP routing to efficiently maintain
the hierarchical organization of routing information to enable fast lookup of IP
addresses [14]. In data compression, dynamic tries are used to represent the so-
called lz-trie and the Huffman coding trie which are the key data structures in
the Ziv-Lempel encoding (lz78) [20] (or its variant LZW encoding [17]) and the
Huffman encoding, respectively. Furthermore, many data structures such as the
suffix trie/suffix tree, the Patricia trie [11], and the associative array (hashing
table) can be maintained as dynamic tries.

Without loss of generality, assume σ ≤ n. A dynamic trie T of size n can
be implemented using a standard tree data-structure in O(n log n) bits space
such that: (1) insertion or deletion of a leaf into or from T takes O(1) time;
and (2) finding the longest prefix of a query pattern P in T takes O(|P |) time.
A number of solutions have been proposed to improve the average time and
space complexities of tries [1,2,11]. However, in the worst case, those solutions
still use O(n log n) bits space and pattern searching still requires O(|P |) time.
Employing the latest advances on compressed trees, a trie can now be maintained
in O(n log σ) bits space under the unit-cost RAM model such that: (1) insertion
or deletion of a leaf takes O(log n) time; and (2) the longest common pattern
query takes O(|P |) time. Note that none of the existing data structures can
answer the longest common pattern query in o(|P |) time.

This paper assumes a unit-cost RAM model with word size logarithmic in
n, in which standard arithmetic and bitwise boolean operations on word-sized
operands can be performed in constant time [9]. Also, we assume the pattern P
is packed in O(|P | log σ/ log n) words. Under such a model, we propose a data
structure which uses O(n log σ) bits such that: (1) insertion or deletion of a
leaf takes O((log log n)2/ log log log n) time; and (2) the longest common pattern

query takes O( |P |
logσ n

(log log n)2

log log log n ) time. Note that when σ = 2o(log n log log log n

(log log n)2
), our

O(n log σ)-bits dynamic trie data-structure can be maintained such that the
longest common pattern query can be performed in o(|P |) time while insertion
and deletion takes o(log n) time.

In this paper we define “sublinear” as follows. We assume that the alphabet
size σ is a function of n (or a constant). We say the space is sublinear if it is
o(n log σ) because n log σ is the input size. We say the time is sublinear if it is
o(n log σ). Note that no algorithm can achieve sublinear time for large alphabets
such as log σ = Ω(log n) because it takes Ω(n log σ

log n ) time to read the input. We

give sublinear time algorithms when σ = 2o(log n log log log n

(log log n)2
).

Our improvement stems from the observation that small tries (that is, tries
of size O(logσ n)) can be maintained very efficiently. Hence, our data structures
partition the trie into many small tries and maintain them individually. With
this approach, we not only store the trie using O(n log σ) bits, but also allow
fast queries and efficient insertions and deletions.

To demonstrate the usefulness of our dynamic trie data structure, we applied
it to generate the lz78 encoding of a text. The Ziv-Lempel encoding (lz78) [20]
(or its variant LZW encoding[17]) of a text is a popular compression scheme.
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Ziv and Lempel [20] showed that the lz78 encoding scheme gives an asymptot-
ically optimal compression ratio.

The current solutions for constructing the lz78 encoding of a text first con-
struct the lz-trie and then generate the lz78 encoding. These solutions either
run in: (1) O(s) time and O(s log s) bits working space [5,15]; or (2) O(sσ)
time and O(s log σ) bits working space [3]. None of the solutions in the liter-
ature runs in sublinear time and O(s log σ)-bit working space. By maintain-
ing the lz-trie using our dynamic trie data structure, we obtain the first LZ
compression algorithm which uses optimal working space and runs in sublin-

ear time when σ = 2o(log s log log log s

(log log s)2
). More precisely, we propose an algorithm

which uses O(s(log σ + log logσ s)/ logσ s) bits working space and runs in in
O(s(log log s)2/(logσ s log log log s)) worst-case time. Note that the working
space is asymptotically smaller than the outputted compressed text.

The paper is organized as follows. Section 2 reviews some previously known
facts about tries and lz78 encoding. Section 3 defines the lz78 encoding and
gives some simple data structures that are useful for maintaining a lz-trie.
Sections 4 and 5 detail our dynamic trie data structure. Finally, Section 6
presents our LZ compression algorithms.

2 Previous Work

A dynamic trie data structure can be implemented naively using O(n log n) bits
such that: (1) insertion and deletion of a leaf takes O(1) time; and (2) the
longest prefix of any query pattern P in T can be found in O(|P |) time. Many
practical improvements have been proposed which yield good performance (on
average) for searching a pattern. Morrison [11] proposed the Patricia trie which
compresses a path by merging the nodes of degree 2. This idea reduces the size
of the trie. Later, Andersson and Nilsson [1] proposed the LC-trie, which reduces
the depth of the trie by increasing the branching factor (level compression). This
idea reduces the average running time [6].

Willard [18,19] proposed two data structures for maintaining a trie of depth
O(log M) for some positive integer M : (1) the Q-fast trie [19], which uses
O(n log M) bits space and searches for the pattern P in T in O(

√
log M) time

while inserting or deleting a leaf in O(
√

log M) time; and (2) the Y-fast trie [18],
which is a static trie that uses O(n log M) bits space and can report the longest
prefix of any pattern P in T in O(log log M) time.

Ziv-Lempel encoding (lz78) is a widely used encoding scheme for compressing
a text [17,20]. lz78 also has applications in compressed indexing; Navarro [13]
presented a compressed full-text self-index called LZ-index based on the lz-trie
whose size is proportional to the compressed text size. The LZ-index allows
efficient pattern queries.

A straightforward implementation of lz78 based on Lempel and Ziv’s original
definition takes O(n2) worst-case time to process a string of length n. Rodeh,
Pratt, and Even [15] improved the running time to O(n) using suffix trees, and
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Brent [5] gave another linear time compression algorithm based on hashing. How-
ever, both algorithms use O(n log n)-bits working space. This is larger than the
size of the Ziv-Lempel encoding, which is O(nHk) where Hk is the k-order en-
tropy of the text. People have recently realized the importance of space-efficient
data compression algorithms [3,10]. Given a long text, we may have enough mem-
ory to store the compressed text (that is, the Ziv-Lempel encoding). However,
we may be unable to construct it if the working space requirement is too large.
For example, we are able to store the Ziv-Lempel encoding of the human genome
in a 2GB RAM computer, but we may fail to construct the encoding due to the
size of the memory. Hence, a space-efficient construction algorithm is necessary.
Utilizing the solution of Arroyuelo and Navarro [3], the Ziv-Lempel encoding of
a text can be constructed using O(σn) time and O(nHk + n log σ/ logσ n) bits
working space.

3 Preliminaries

We first reviews simple data structures used for dynamically maintaining a set
of length-(logσ n) strings and a tree, respectively, in Sections 3.1 and 3.2. These
data structures are the building blocks of our dynamic trie data structure, which
is used to dynamically maintain a lz-trie. Section 3.3 reviews the definitions of
the lz78 encoding and the lz-trie.

3.1 A Data Structure for Maintaining a Set of Length-(logσ n)
Strings

This subsection describes a dynamic data structure for maintaining a set of k
strings, each of length at most logσ n, over an alphabet of size σ. It needs to
support three operations: (1) insertion of a length-(logσ n) string, (2) deletion
of a length-(logσ n) string, and (3) predecessor of a string P (that is, reporting
the string currently in the set which is lexicographically just smaller than P ).

We make use of the dynamic predecessor data structure of Beame and Fich [4],
whose properties are summarized in the next lemma:

Lemma 1 ([4]). The dynamic predecessor data structure of Beame and Fich [4]
can maintain a set of � O(log n)-bit integers using O(� log n) bits under insertions
and deletions while supporting predecessor queries so that each insert/delete/
predecessor operation takes O((log log n)2/(log log log n)) time.

We immediately obtain:

Lemma 2. Consider k strings of length at most logσ n over an alphabet of size
σ. We can store all strings in O(k log n) bits such that insert/delete/predecessor
can be found in O((log log n)2/ log log log n) time.

Proof. Treat the strings as integers in the range {0, 1, . . . , n − 1} and apply
Lemma 1. ��



428 J. Jansson, K. Sadakane, and W.-K. Sung

3.2 Data Structures for Maintaining an Edge-Labeled Tree

This section discusses how to dynamically maintain an edge-labeled tree T . We
assume the size of the tree and all labels are integers smaller than n. We support
the following operations:

– Insert(u, κ, v): Insert a leaf v as a child of u and label the edge (u, v) by κ.
– Delete(v): Delete the leaf v and the edge between v and its parent (if any).
– Child(u, κ): Return the child v of u such that the edge (u, v) is labeled by κ.

Lemma 3. A tree T can be maintained dynamically in O(|T | log n) bits space
such that Child/Insert/Delete can be answered in O((log log n)2/(log log log n))
time.

Proof. We represent T using two dynamic predecessor data structures D1 and
D2, as in Lemma 1. For each edge (u, v) labeled by κ, we maintain n2 ·u+n ·κ+v
in D1 and n2 · v + n · u + κ in D2. D1 and D2 take O(|T | log n)-bit space. Since
u, v, κ ≤ n, there is a one-to-one mapping between (u, v, κ) and the number
w = n2 · u + n · κ + v in D1. To be precise, v = w mod n, u = �w/n2�, κ =
�(w − u · n2)/n�. Similarly for D2.

To insert a leaf node v, which is a child of u with edge label κ, it can be done
by inserting n2 · u + n · κ + v in D1 and n2 · v + n · u + κ in D2.

To delete a leaf node v, we first query D2 to retrieve the integer w which is
just bigger than n2 · v. Note that w = n2 · v + n · u + κ where u is the parent of
v and κ is the label of (u, v). Then, the leaf node v can be removed by deleting
n2 · u + n · κ + v from D1 and n2 · v + n · u + κ from D2.

To compute Child(u, κ), we first retrieve the integer w which is just bigger
than n2 ·u+n ·κ in D1. Then, Child(u, κ) equals the remainder when we divide
w by n.

The running time for each of the three operations is O((log log n)2/(log log
log n)) time by Lemma 1. ��

3.3 LZ78 Encoding and LZ-Trie

Ziv-Lempel encoding [20], or lz78, is a data compression scheme for strings. For
a given string S = S[1..n], it constructs a phrase list and a lz-trie procedurely
using the following method: First, initialize a trie T as empty, the current position
p = 1, and the number of phrases c = 0. Then, parse S into phrases from left
to right until p > n as follows. Find the longest string, t ∈ T , that appears as a
prefix of S[p..n]. Set c = c + 1. Obtain the phrase sc = S[p..p + |t|] = t · S[p + |t|]
and insert it into T . Then, set p = p+ |t|+1 and repeat the parsing for the next
phrase.

The trie T generated during the above process is called the lz-trie while the
list of phrases s1, s2, . . . , sc is called the phrase list. The Ziv-Lempel encoding of
the given string S consists of the lz-trie together with the phrase list for S. By
[20], it holds that

√
n ≤ c ≤ n/ logσ n. Also, the lz-trie and the phrase list can

be stored in c log c + O(c log σ) = nHk + O(n log σ/ logσ n) bits.



Compressed Dynamic Tries with Applications to LZ-Compression 429

4 Dynamically Maintaining a Trie of Height logσ n

In this and the next section, we show how to maintain a trie while efficiently
supporting the following operations:

– Insert(T, u, a): Insert a leaf v as a child of u such that the label of (u, v) is
a, where a ∈ A.

– Delete(T, u): Delete the leaf u and the edge between u and its parent (if
any).

– Lcp(T, P ): Report the length � such that P [1..�] is the longest prefix which
exists in T .

Here, we discuss the dynamic trie data structure for small tries. First, we
consider how to maintain a trie of size O(logσ n). Then, we study how to maintain
a trie of height at most logσ n. (In the next section, we discuss how to maintain
a general trie.)

4.1 Maintaining a Trie of Size O(logσ n)

This subsection describes how to dynamically maintain a trie T of size O(logσ n).

Lemma 4. Given a precomputed table of size O(n5ε) bits for any constant 0 <
ε < 0.2, we can maintain a trie T of size ε logσ n using at most 3ε logn bits. All
operations Lcp, Insert, and Delete take O(1) worst case time. Also, preorder of
any node can be computed in O(1) time.

Proof. The data structure has two parts. First, the topology of T is stored in
2|T | = 2ε logσ n bits using parenthesis encoding [12,8]. Second, the edge labels
of all edges are stored in preorder using |T | logσ = ε log n bits. Therefore the
total space is at most 3ε log n bits.

In addition, the data structure also requires four pre-computed tables. The
first table stores the value of Lcp(R, Q) for any trie R of size at most ε logσ n
and any string Q of length at most ε logσ n. The second table stores the value of
preorder(R, Q), which is the preorder of any string Q in the trie R for any trie
R of size at most ε logσ n and any string Q of length at most ε logσ n. Since there
are O(22·ε logσ n · σε logσ n · σε logσ n) = O(n4ε) different combinations of R and Q,
both tables can be stored in O(n4ε log logσ n) = O(n5ε) bits space. The size of
the tables for insert/delete is O(22·ε logσ n ·σε logσ n · ε logσ n ·σ · ε log n) = O(n5ε).

The four operations can be supported in O(1) time as follows using a precom-
puted table for each operation.

– To insert/delete a node x, we update the topology and the edge label.
– Lcp(T, P ) can be computed by asking O(1) queries. in the precomputed

table.
– Preorder of any string in T can also be computed in O(1) time. ��

Lemma 5. The tables for Lcp() and preorder() can be constructed incremen-
tally using O(logσ n) time per entry. When the size of the tables is n, Lcp(R, Q)
and preorder(R, Q) queries can be answered in O(1) time for any R of size at
most 0.2 logσ n and Q of length at most 0.2 logσ n.
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4.2 Maintaining a Trie of Height O(logσ n)

This section describes how to dynamically maintain a trie of height O(logσ n).

Lemma 6. Given a precomputed table of size O(n5ε) bits for any constant 0 <
ε < 0.2, we can dynamically maintain a trie T of height ε

2 logσ n using
O(|T | log σ) bits space such that all operations Lcp, Insert, and Delete take
O((log log n)2/ log log log n) time.

Proof. Let ui be the node in T whose preorder is i. Let S = {s1, s2, . . . , s|T |} be
the set of strings where si is the string representing the path label of ui. Note
that the si’s are sorted in alphabetical order.

A block is defined to be a series of strings si, si+1, . . . , sj where i ≤ j ≤ |T |.
Note that all strings in a block can be represented as a subtrie of T . The nodes
ui, ui+1, . . . , uj are connected if we add the nodes on the path from the root to
ui. Therefore the size of the subtrie is at most j − i + 1 + ε

2 logσ n.
The set S can be partitioned into a set B = {B1, B2, . . . B|B|} of

non-overlapping blocks such that B1 ∪B2 ∪ . . .∪B|B| = S. We also maintain the
invariant that (1) every block contains at most ε

2 logσ n strings and (2) at most
one block has less than ε

4 logσ n/2 strings. Besides, for each Bi ∈ B, let sb(i) be
the smallest string in Bi.

Our dynamic data structure represents the trie T using a two-level data struc-
ture.

– (1) Top-level: Using the data structure in Lemma 2, we store {sb(1), . . . ,
sb(|B|)}.

– (2) Block-level: For each block Bi ∈ B, we can represent the strings in Bi

as a trie of size ε logσ n and store the trie using Lemma 4.

We first show that the space required is O(|T | log σ) bits. Note that |B| =
O( |T |

ε logσ n ) blocks. The space required for the top-level structure is O(ε−1|B| logn)
= O(ε−1|T | logσ) bits. Each block requires O(log n) bit space by Lemma 4. The
space for the block-level structure is O(|B| log n) = O(|T | log σ).

The time complexity of the three operations is as follows.

– Lcp(T, P ): Let P ′ be the first ε
2 logσ n characters of P . To compute the

longest common prefix of P in T , we first find si and si+1 such that P ′ is
alphabetically in between si and si+1; let lcp1 be the longest common prefix
of P ′ and si and lcp2 be the longest common prefix of P ′ and si+1; then,
Lcp(T, P ) equals the maximum of lcp1 and lcp2. To locate si, our strategy
is to first locate the sb(j) which is alphabetically just smaller than or equal
to P ′. By Lemma 2, sb(j) can be found in O((log log n)2/ log log log n) time.
Then, within Bj , we locate the si just smaller than or equal to P ′. By
Lemma 4, this step takes O(1) time.

– Insert(T, u, a): Suppose u represents a string s ∈ S. This operation is equiv-
alent to insert a new string s · a after s. Let Bj be the block containing s.
We first insert s · a into Bj using O(1) time by Lemma 4. If Bj contains less
than ε

2 logσ n strings, then the insert operation is done. Otherwise, we need
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to split Bj into two blocks each containing at least ε
4 logσ n strings. The split

takes O(1) time since Bj is packed in O(log n) bits. Lastly, we update the
top-level structure to indicate the existence of the new block, which takes
O((log log n)2/ log log log n) time.

– Delete(T, u): The analysis is similar to the Insert operation. ��

5 Maintaining a Trie with No Height Restrictions

This section gives a data structure to dynamically maintain a general trie T . We
also show how to build an auxiliary data structure for T using O(|T |) time such
that the preorder of any node can be reported in O(log log n) time.

We describe a dynamic data structure for a trie T such that insertion/deletion
of a leaf takes O((log log n)2/ log log log n) time and longest common prefix of P

can be computed in O( |P |
logσ n

(log log n)2

log log log n ) time.
Our data structure represents a general trie T by partitioning it into tries of

height at most h = ε
2 logσ n for some constant 0 < ε < 0.2. To formally describe

the representation, we need some definitions.
Let δ = h/3. For any node u ∈ T , u is denoted as a linking node if (1) the

height of u is of multiple of δ and (2) the subtrie rooted at u has more than δ
nodes.

Let LN be the set of linking nodes of T . For any u ∈ LN , let τu be the subtrie
of T rooted at u including all descendents v of u such that there is no linking
node in the path between u and v. For any non-root node v ∈ T , we denote by
p(v) the linking node such that p(v) is the lowest ancestor of u in T .

Let T ′ be a tree whose vertex set is LN and whose edge set is {(p(u), u) |
u ∈ LN and u is not the root}. The label of every edge (p(u), u) in T ′ is the
length-δ string represented by the path from p(u) to u in T .

Based on the above discussion, T can be represented by storing (1) T ′ and
(2) τu for all u ∈ LN . The next lemma bounds the size of LN .

Lemma 7. |LN | ≤ |T |/δ. Also, for any u ∈ LN , τu is of height smaller than 2δ.

Proof. Each u ∈ LN has at least δ unique nodes associated to it. Hence |T | =∑
u∈LN |τu| ≥ |LN |δ. Thus, |LN | ≤ |T |/δ. By construction, τu is of height

smaller than 2δ. ��

The theorem below is our main result. It states how to maintain T ′ and τu for
all u ∈ LN .

Theorem 1. We can dynamically maintain a trie T using O(|T | log σ) bits space
such that Lcp(T, P ) takes O( |P |

logσ n
(log log n)2

log log log n ) time while insertion/deletion of a
leaf takes O((log log n)2/ log log log n) time.

Proof. We represent T ′ by Lemma 3 using O(|T ′| log n) = O( |T |
logσ n log n) =

O(|T | log σ) bits. For every u ∈ LN , the height of τu is bounded according to
Lemma 7, so we can represent τu as in Lemma 6 using O(|τu| log σ) bits. Since
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∑
u∈LN |τu| = |T |, all τu’s can be represented in O(|T | log σ) bits. Also, we

maintain the lookup tables for answering queries Lcp(R, Q) and preorder(R, Q)
for any tree R of size at most ε logσ |T | and any query Q of length at most
ε logσ |T | where 0 < ε < 1.

For Lcp(T, P ), the longest prefix of P which exists in T can be found in two
steps. First, we find the longest prefix of P in T ′. It is done in O( |P |

logσ n
(log log n)2

log log log n )
time using the predecessor data structure in Lemma 3. Suppose u is the node in
T ′ corresponding to the longest prefix P [1..x] of P . Second, we find the longest
prefix of P [x + 1..|P |] in τu. By Lemma 6, it takes another O( (log log n)2

log log log n ) time.
For insertion/deletion of a leaf node u, suppose we need to insert/delete the

leaf node u in the subtrie τv where v ∈ LN . By Lemma 6, it takes O( (log log n)2

log log log n )
time. Moreover, if the insertion/deletion creates/destroys a new linking node v′

in τv, we need to do the following additional steps. (1) Insert/delete a new leaf in
T ′ corresponding to v′ (This step can be done in O( (log log n)2

log log log n ) time by Lemma 3);
(2) Create/delete a new subtrie τv′ (Since τv′ is of size smaller than logσ n, we
can create/delete it in O(1) time); and (3) Insert/delete τv′ from τv (Since τv′ is
stored in O(1) blocks in τv, we can modify those blocks in O( (log log n)2

log log log n ) time).
(4) For every insertion, if the size of the lookup tables Lcp() and preorder() is
smaller than nε, we incrementally increase the size of the tables by one using
Lemma 5. For every deletion, if the size of the tables is bigger than 2nε, we
reduce the size of the tables by one using Lemma 5. ��

The following lemma states how to build an auxiliary data structure for T to
answer preorder queries.

Lemma 8. Given a trie T represented by the dynamic data structure in The-
orem 1, we can generate an auxiliary data structure of size O(|T | log σ) bits in
O(|T |) time such that the preorder of a node can be computed in O(log log n)
time.

Proof. The auxiliary data structure stores information for every linking node u
(that is, u ∈ T ′). First, we store the preorder of u. Then, for the corresponding
subtrie τu, define B and the set {sb(1), sb(2), . . . sb(|B|)} as in Lemma 6. We store
three information below.

1. By Lemma 2, using O(|B|(log log n)2/ log log log n) time, we extract all
strings in {sb(1), sb(2), . . . sb(|B|)}. The set {sb(1), sb(2), . . . sb(|B|)} is stored in
O(|B| log n) bits space using O(|B| log log n) time by the y-fast trie data
structure [18]. Then, given any string P , we can report the largest i such
that sb(i) is alphabetically smaller than or equal to P using O(log log n) time.

2. It stores an array V [1..|B|] where V [j] equals the preorder values of the sb(i).
Since each preorder value can be stored in log n bits, the array V can be
stored in |B| logn = O(|T |) bits.

3. For each Bi ∈ B, all strings in Bi are represented as a trie of size O(log n)
bits using Lemma 4.
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For any node v ∈ T , let u be the linking node that is the lowest ancestor
of u in T . Let B be the block in τu which contains v and w be the node in
τu corresponds to the smallest string in B. Note that the preorder of v equals
the sum of (1) the preorder of u in T , (2) the preorder of w in τu, and (3) the
preorder of v in B.

For (1), the preorder of u in T is stored in the auxiliary data structure. For
(2), by y-fast trie, using O(log log n) time, we can find the preorder of w in τu.
For (3), by Lemma 4, the preorder v in B can be determined in O(1) time. The
lemma follows. ��

6 LZ-Compression

This section gives a two-phase algorithm to construct the LZ-compression of
the input text S[1..s]. The first phase constructs the lz-trie based on the trie
data structure in Theorem 1. Then, it enhances the lz-trie with an auxiliary
data structure so that preorder of any node can be computed efficiently using
Lemma 8. The second phase generates the phrase list. It scans the text S to
output the list of preorders of the phrases. Fig. 1 describes the details of the al-
gorithm. The lemma below states the running time of our algorithm. We assume
a unit-cost RAM model with word size log s, and σ ≤ s.

Lemma 9. Suppose we use the trie data structure in Theorem 1. The algorithm
in Fig. 1 builds the lz-trie T and the phrase list using O( s

logσ s
(log log s)2

log log log s) time

and O( s(log σ+log logσ s)
logσ s ) bits working space.

Proof. Phase 1 builds the trie T through the while-loop in Step 4 of Fig. 1.
Since there are c phrases, the while-loop will execute c times and generate c
phrases s1, s2, . . . , sc. For the i-th iteration, by Theorem 1, Step 4.1 can find
si in O( |si|

logσ s
(log log s)2

log log log s) time. Step 4.2 stores the length of si by delta-code in
1+�log si�+2�log(1+�log si�)� bits. Then, Step 4.3 inserts the phrase si into the
trie T using O((log log s)2/ log log log s) time. Finally, the lz-trie T is enhanced
with an auxiliary data structure for preorder by Lemma 8.

Since
∑c

i=1 |si| = s, the c iterations take O(
∑c

i=1
|si|

logσ s
(log log s)2

log log log s ) time, which

equals O( s
logσ s

(log log s)2

log log log s) time. The auxiliary data structure is constructed using
O(c) = O( s

logσ s ) time.
Given the trie T and the string S, Phase 2 first enhances the data structure so

that preorder of any node in T can be computed in O(log log s) time by Lemma 8.
For each phrase si, we first obtain its length � stored by delta-code. Then we
search the trie for the node representing the phrase si = S[p..p + � − 1]. It takes
O( |si|

logσ s
(log log s)2

log log log s ) time by Theorem 1. The preorder of the phrase si can be

computed in O(log log s) time. In total, Phase 2 takes O(
∑c

i=1
|si|

logσ s
(log log s)2

log log log s)

time, which equals O( s
logσ s

(log log s)2

log log log s) time.
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Algorithm LZcompress
Input: A sequence S[1..s].

Output: The compressed text of S.

1 Initialize T as an empty trie. /* Phase 1: Construct the trie tree T */
2 Denote empty phrase as phrase 0.
3 p = 1;
4 while p ≤ n do
4.1 Find the longest phrase t ∈ T that appears as a prefix of S[p..s].
4.2 Store the length of t by delta-code.
4.3 Insert the phrase t · S[p + |t|] into T .
4.4 p = p + |t| + 1;

endwhile
5 Enrich the trie T so that we can compute the preorder of any node in T by

Lemma 8.
6 p = 1; j = 1 /* Phase 2: Construct the phrase list s1s2 . . . sc */
7 while p ≤ n do
7.1 Obtain the length � of the next phrase stored by delta-code.
7.2 Find the phrase t = S[p..p + � − 1] ∈ T .
7.3 sj = preorder index of t in T

7.4 Output sj .
7.5 p = p + |t| + 1; j = j + 1;

endwhile
End LZcompress

Fig. 1. Algorithm for LZ-compression

In total, the running time is O( s
logσ s

(log log s)2

log log log s) time. The working space re-

quired to store the lz-trie is O(c log σ) = O( s log σ
logσ s ) bits, and the space for storing

lengths of the phrases is
∑c

i=1 O(1 + log si) = O(c log s
c ) = O( s log logσ s

logσ s ). ��

As a final remark, the working space of the algorithm is precisely O(c log σ +
c log logσ s) where c is the number of phases output. Since c ≥ √

s, the working
space must be asymptotically smaller than the output size, which is O(c log c +
c log σ). Note that the output size is larger than c log c ≥ 1

2
√

s log s, while the
tables used in the algorithm have size O(sε) for arbitrarily small ε > 0.

Secondly, the output codes of the algorithm in Fig. 1 are different from the
original lz78. The algorithm outputs the same codes as [16]1. Then we can
decode any substring of S of length O(logσ s) in constant time. The output size
of [16] is asymptotically the same as the original lz78.

1 More precisely, the output codes represents preorders of the trie. To convert it into
the original lz78, we need one more scan of S using the trie.
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