
Faster Algorithms for Computing
the R* Consensus Tree

Jesper Jansson1(B), Wing-Kin Sung2,3, Hoa Vu4, and Siu-Ming Yiu5

1 Laboratory of Mathematical Bioinformatics, Institute for Chemical Research,
Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan

jj@kuicr.kyoto-u.ac.jp
2 School of Computing, National University of Singapore,

13 Computing Drive, Singapore 117417, Singapore
ksung@comp.nus.edu.sg

3 Genome Institute of Singapore, 60 Biopolis Street, Genome,
Singapore 138672, Singapore

4 Department of Computer Science and Engineering,
University of Minnesota – Twin Cities, Minneapolis, MN, USA

hoavu89@gmail.com
5 Department of Computer Science, The University of Hong Kong,

Pokfulam Road, Hong Kong, China
smyiu@cs.hku.hk

Abstract. The fastest known algorithms for computing the R* consen-
sus tree of k rooted phylogenetic trees with n leaves each and identical
leaf label sets run in O(n2√log n) time when k = 2 (ref. [10]) and O(kn3)
time when k ≥ 3 (ref. [4]). This paper shows how to compute it in O(n2)
time for k = 2, O(n2 log4/3 n) time for k = 3, and O(n2 logk+2 n) time
for unbounded k.

1 Introduction

Distinctly leaf-labeled, unordered trees known as phylogenetic trees are used by
scientists to describe evolutionary history [8,13]. Given a set S of phylogenetic
trees with the same leaf labels but different branching structures, a single phy-
logenetic tree that summarizes the trees in S according to some well-defined
rule is called a consensus tree [4,8,13]. Consensus trees are used when dealing
with unreliable data; e.g., to infer an accurate phylogenetic tree for a fixed set
of species, one may first construct a collection of alternative trees by applying
resampling techniques such as bootstrapping to the same data set, by running
different tree construction algorithms, or by using many independent data sets,
and then compute a consensus tree from the obtained trees.

A number of different consensus trees have been defined and studied in the
literature; see [4], Chapter 30 in [8], or Chapter 8.4 in [13] for some surveys. This
paper deals with one particular consensus tree called the R* consensus tree [4],

Jesper Jansson: Funded by The Hakubi Project and KAKENHI grant num-
ber 26330014.

c© Springer International Publishing Switzerland 2014
H.-K. Ahn and C.-S. Shin (Eds.): ISAAC 2014, LNCS 8889, pp. 414–425, 2014.
DOI: 10.1007/978-3-319-13075-0 33

Faster Algorithms for Computing the R* Consensus Tree 415

T :1

a b

c d e

T :2

d eba c

T :3

c

a

b

d e

d eba c

R*:

Fig. 1. An example. Let S = {T1, T2, T3} as above. Then Rmaj = {ab|d, ab|e, ac|d,
ac|e, de|a, bc|d, bc|e, de|b, de|c} and the R* consensus tree of S is the tree on the right.

defined in Section 1.1 below. The R* consensus tree has several nice mathe-
matical properties [7]. On the negative side, the existing algorithms for building
it [4,10,11] are rather slow. To alleviate this issue, we present faster algorithms.

1.1 Definitions and Notation

In this paper, a phylogenetic tree is a rooted, unordered, leaf-labeled tree in
which every internal node has at least two children and all leaves have different
labels. See Fig. 1 for some examples. (Unrooted phylogenetic trees are also useful
in many contexts [8], but will not be considered here.) Phylogenetic trees are
called “trees” from here on, and every leaf in a tree is identified with its label.

Let T be a tree. The set of all nodes in T and the set of all leaves in T are
denoted by V (T) and Λ(T), respectively. For any u ∈ V (T), Tu is the subtree
of T rooted at u. For any X ⊆ V (T), lcaT (X) is the lowest common ancestor
in T of the nodes in X; when |X| = 2, we simplify the notation to lcaT (u, v),
where X = {u, v}, and if T is unambiguous, we sometimes just write lca(u, v).

A triplet is a tree with exactly three leaves. Suppose t is a triplet with Λ(t) =
{x, y, z}. If t is non-binary, it has one internal node; in this case, t is called a
fan triplet and is denoted by x|y|z. Otherwise, t is binary and has two internal
nodes; in this case, t is called a resolved triplet and is denoted by xy|z where
lcat(x, y) is a proper descendant of lcat(x, z) = lcat(y, z). Thus, there are four
possible triplets x|y|z, xy|z, xz|y, yz|x for any set of three leaves {x, y, z}.
For any tree T and {x, y, z} ⊆ Λ(T), x|y|z is said to be consistent with T if
lcaT (x, y) = lcaT (x, z) = lcaT (y, z), and xy|z is consistent with T if lcaT (x, y)
is a proper descendant of lcaT (x, z) = lcaT (y, z). Let T ||{x,y,z} be the unique
triplet with leaf set {x, y, z} that is consistent with T . For any tree T , let r(T)
be the set of resolved triplets consistent with T and let t(T) be the set of all
triplets (resolved triplets as well as fan triplets) consistent with T , i.e., define
r(T) = {T ||{x,y,z} : {x, y, z} ⊆ Λ(T) and T ||{x,y,z} is a resolved triplet} and
t(T) = {T ||{x,y,z} : {x, y, z} ⊆ Λ(T)}.

Next, let S = {T1, . . . , Tk} be a given set of trees with Λ(T1) = ... =
Λ(Tk) = L. Write n = |L|. For any {a, b, c} ⊆ L, define #ab|c as the number of
trees Ti ∈ S for which ab|c ∈ t(Ti). The set of majority resolved triplets, denoted

416 J. Jansson et al.

by Rmaj , is defined as
{
ab|c : a, b, c ∈ L and #ab|c > max{#ac|b, #bc|a}}.

(Note that the fan triplets consistent with the trees in S have no impact here.)
An R* consensus tree of S is a tree τ with Λ(τ) = L that satisfies r(τ) ⊆ Rmaj

and that maximizes the number of internal nodes. See Fig. 1 for an example.

For any leaf label set L, a cluster of L is any nonempty subset of L, and
a tree T is said to include a cluster A of L if T contains a node u such that
Λ(Tu) = A. Let R be a set of triplets over a leaf label set L =

⋃
r∈R Λ(r) such

that for each {x, y, z} ⊆ L, at most one of x|y|z, xy|z, xz|y, and yz|x belongs
to R. A cluster A of L is called a strong cluster of R if aa′|x ∈ R for all a, a′ ∈ A
with a �= a′ and all x ∈ L \A. Furthermore, L as well as every singleton set of L
is also defined to be a strong cluster of R. Strong clusters provide an alternative
characterization of R* consensus trees, stated in the last part of the next lemma:

Lemma 1. [4,10] The R* consensus tree always exists, is unique, and includes
every strong cluster of Rmaj and no other clusters.

1.2 Previous Work

The R* consensus tree can be computed in O(kn3) time, where k = |S| and
n = |L|, by an algorithm from [4]: First construct r(Ti) for all Ti ∈ S in O(kn3)
time, then construct Rmaj by counting the occurrences in the r(Ti)-sets of the
different resolved triplets for every {x, y, z} ∈ L in O(kn3) total time, and finally
apply the O(n3)-time strong cluster algorithm from Corollary 2.2 in [5] to Rmaj .
For k = 2, an older algorithm for computing the so-called RV-III tree of two input
trees in O(n3) time [11] can also be used [4] to achieve the same running time.

Since Rmaj may contain Ω(n3) elements, any method that explicitly con-
structs Rmaj requires Ω(n3) time. For the special case of k = 2, it was shown
in [10] that the R* consensus tree can in fact be computed in O(n2

√
log n)

(= o(n3)) time. The algorithm from [10] is reviewed in Section 1.3.

1.3 Overview and Organization of the Paper

To compute the R* consensus tree without constructing Rmaj , the algorithm
in [10] for k = 2 and the new algorithms in this paper follow the same basic
strategy, summarized as Algorithm R* consensus tree in Fig. 2. To explain
the details, some additional definitions are needed.

Suppose that R is a given set of triplets over a leaf label set L =
⋃

r∈R Λ(r)
such that for each {x, y, z} ⊆ L, at most one of x|y|z, xy|z, xz|y, and yz|x
belongs to R. For each a, b ∈ L with a �= b, define sR(a, b) =

∣
∣{y ∈ L : ab|y ∈

R}∣∣, and for each a ∈ L, define sR(a, a) =
∣
∣L

∣
∣ − 1. A cluster A of L is called

an Apresjan cluster of sR if sR(a, a′) > sR(a, x) for all a, a′ ∈ A and x ∈ L \ A.
Since every strong cluster of R is an Apresjan cluster of sR [4,10], we see that
in the case R = Rmaj , the set of Apresjan clusters of sRmaj

forms a superset of
the set of strong clusters of Rmaj . Moreover, by Theorem 2.3 in [5], there are

Faster Algorithms for Computing the R* Consensus Tree 417

Algorithm R* consensus tree

Input: A set S = {T1, . . . , Tk} of trees with Λ(T1) = . . . = Λ(Tk) = L
Output: The R* consensus tree of S
1: Compute and store sRmaj (a, b) for all a, b ∈ L
2: Compute the Apresjan clusters of sRmaj

3: for each Apresjan cluster A of sRmaj do
4: Determine if A is a strong cluster of Rmaj

5: end for
6: Let C be the set of strong clusters of Rmaj , and build a tree T which includes

all clusters in C and no other clusters of L
7: Output T

Fig. 2. Algorithm R* consensus tree

O(n) Apresjan clusters of sRmaj
and they form a nested hierarchy on L, i.e., a

tree, which can be constructed in O(n2) time with the method of Corollary 2.1
in [5] when the value of sRmaj

(a, b) for any a, b ∈ L is available in O(1) time.

Now, the idea behind Algorithm R* consensus tree is to first compute a
superset of the set of strong clusters of Rmaj , namely the Apresjan clusters
of sRmaj

(Steps 1 and 2), then remove any clusters that are not strong clusters
of Rmaj (Steps 3–5), and return a tree that includes precisely the remaining
clusters (Steps 6–7). By Lemma 1, this tree is the R* consensus tree.

The algorithm’s time complexity depends on various factors. As shown in [10],
if k = 2 then computing the values of sRmaj

(a, b) for all a, b ∈ L in Step 1 can
be done in O(n2

√
log n) time in total, while all other steps take O(n2) time.

Section 2 below improves it to O(n2), yielding an O(n2)-time solution for k = 2.
For k ≥ 3, we observe that Steps 2, 6, and 7 do not depend on k, so these

steps take a total of O(n2) time as in [10]. However, Steps 1 and 3–5 have
to be modified; for example, the condition from Lemma 13 in [10] for check-
ing if a given cluster is a strong cluster of Rmaj does not work if k = 3. As
for Step 1, Sections 3.1–3.3 show how to compute sRmaj

(a, b) for all a, b ∈ L

in O(n2 log4/3 n) time when k = 3, and Section 4.1 in O(n2 logk n) time for
unbounded k. For Steps 3–5, Section 3.4 gives an O(n2α(n))-time solution when
k = 3, where α(n) is the inverse Ackermann function of n, while Section 4.2
gives an O(n2 logk+2 n)-time solution for unbounded k. In summary, we obtain:

Theorem 1. Let S be an input set of k trees with n leaves each and identical
leaf label sets. The R* consensus tree of S can be computed in:

• O(n2) time when k = 2;
• O(n2 log4/3 n) time when k = 3; and
• O(n2 logk+2 n) time when k is unbounded.

Thus, if k < log n
(log log n)1+ε for some ε > 0, the time complexity is subcubic in n.

Due to space constraints, most of the proofs have been omitted from the
conference proceedings version of this paper.

418 J. Jansson et al.

2 Computing the R* Consensus Tree When k = 2

This section proves that sRmaj
(a, b) for all a, b ∈ L with a �= b can be computed in

O(n2) time in total when k = 2, thereby reducing the time complexity of Step 1 of
Algorithm R* consensus tree in Section 1.3 (and hence the algorithm’s overall
running time) to O(n2).

Recall that sRmaj
(a, b) =

∣
∣{w : ab|w ∈ Rmaj}

∣
∣ for any a, b ∈ L with a �= b,

and sRmaj
(a, a) = |L| − 1 for any a ∈ L. By definition, ab|w ∈ Rmaj if and only

if it is consistent with both T1 and T2, or it is consistent with one of T1 and T2

and a|b|w is consistent with the other tree. By Corollary 1 in [10], sRmaj
(a, b) =

countr,r(a, b)+countr,f (a, b)+countf,r(a, b) for every a, b ∈ L with a �= b, where
countr,r(a, b) =

∣
∣{w ∈ L \ {a, b} : ab|w ∈ t(T1) ∩ t(T2)}

∣
∣, countr,f (a, b) =∣

∣{w ∈ L \ {a, b} : ab|w ∈ t(T1), a|b|w ∈ t(T2)}
∣
∣, and countf,r(a, b) =

∣
∣{w ∈

L\{a, b} : a|b|w ∈ t(T1), ab|w ∈ t(T2)}
∣
∣. It was shown in [10] that countr,r(a, b),

countr,f (a, b), and countf,r(a, b) for all a, b ∈ L can be calculated in O(n2
√

log n),
O(n2), and O(n2) total time, respectively. We now eliminate the bottleneck.

Lemma 2. For every a, b ∈ L, it holds that countr,r(a, b) = |L|−|Λ(T lca(a,b)
1)|−

|Λ(T lca(a,b)
2)| + |Λ(T lca(a,b)

1) ∩ Λ(T lca(a,b)
2)|.

Lemma 3. countr,r(a, b) for all a, b ∈ L can be computed in O(n2) time in total.

Proof. For i ∈ {1, 2}, compute and store all values of |Λ(Tu
i)|, where u ∈ V (Ti),

in O(n) time by doing a bottom-up traversal of each tree. Also, compute and
store all values of |Λ(Tu

1)∩Λ(T v
2)|, where u ∈ V (T1) and v ∈ V (T2), in O(n2) time

by the postorder traversal-based method used in Lemma 7.1 in [1]. Preprocess
T1 and T2 in O(n) time so that any subsequent lca-query can be answered in
O(1) time [2,9]. Next, for each a, b ∈ L, obtain countr,r(a, b) in O(1) time by
applying the formula in Lemma 2. The total running time is O(n2). �	

3 Computing the R* Consensus Tree When k = 3

We now focus on the case k = 3. Sections 3.1–3.3 and Section 3.4 describe how to
implement Step 1 and Steps 3–5, respectively, of Algorithm R* consensus tree.

3.1 Computing sRmaj
When k = 3

Suppose S = {T1, T2, T3}. For every ab|w ∈ Rmaj , there are three possibilities:

Lemma 4. For any a, b, w ∈ L, ab|w ∈ Rmaj if and only if either

1. ab|w is consistent with T1, T2, and T3; or
2. ab|w is consistent with Ti and Tj but not Tk for {i, j, k} = {1, 2, 3}; or
3. ab|w is consistent with one of T1, T2, T3, and a|b|w with the other two.

Faster Algorithms for Computing the R* Consensus Tree 419

To count the triplets covered by the different cases in Lemma 4, define:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

countr,r,r(a, b) =
∣
∣{w ∈ L \ {a, b} : ab|w ∈ t(T1) ∩ t(T2) ∩ t(T3)}

∣
∣

count
Ti,Tj
r,r,∗ (a, b)=

∣
∣{w ∈ L \ {a, b} : ab|w ∈ t(Ti) ∩ t(Tj)}

∣
∣, i, j ∈ {1, 2, 3}, i < j

countTi
r,f,f (a, b) =

∣
∣{w ∈ L \ {a, b} : ab|w ∈ t(Ti) and a|b|w is consistent with

the other two trees}∣∣, for i ∈ {1, 2, 3}

Then, sRmaj (a, b) can be expressed as in the next lemma.

Lemma 5. Let a, b ∈ L with a �= b. Then sRmaj (a, b) =
∑3

i=1 countTi
r,f,f (a, b) +

∑
1≤i<j≤3 count

Ti,Tj
r,r,∗ (a, b) − 2countr,r,r(a, b).

For each pair i, j ∈ {1, 2, 3} with i < j, the values of count
Ti,Tj
r,r,∗ (a, b) for all

a, b ∈ L can be obtained in O(n2) time by the method from Lemma 3 in Section 2
with Ti and Tj as the two input trees. The next subsections show how to calculate
the values of countr,r,r(a, b) for all a, b ∈ L in O(n2 log4/3 n) time (Lemma 9 in
Section 3.2) and countTi

r,f,f (a, b) for all a, b ∈ L for each i ∈ {1, 2, 3} in O(n2) time
(Lemma 12 in Section 3.3). Then, we can apply the formula in Lemma 5 to get each
value of sRmaj (a, b) in O(1) time. In summary:

Lemma 6. When k = 3, the values of sRmaj (a, b) for all a, b ∈ L can be computed in

O(n2 log4/3 n) time in total.

3.2 Computing countr,r,r

First, rewrite countr,r,r(a, b) in a way analogous to the expression in Lemma 2:

Lemma 7. For every a, b ∈ L, countr,r,r(a, b) = |L|−∑3
i=1 |Λ(T

lca(a,b)
i)|+∑1≤i<j≤3 |

Λ(T
lca(a,b)
i) ∩ Λ(T

lca(a,b)
j)| − |Λ(T

lca(a,b)
1) ∩ Λ(T

lca(a,b)
2) ∩ Λ(T

lca(a,b)
3)|.

Lemma 8. Let a ∈ L be fixed. Then the values of |Λ(T
lca(a,b)
1)∩Λ(T

lca(a,b)
2)∩Λ(T

lca(a,b)
3)|

for all b ∈ L \ {a} can be computed in O(n log4/3 n) time in total.

Proof. For w ∈ L \ {a} and i ∈ {1, 2, 3}, let dTi(w) be the distance in Ti from a

to lca(a, w). For any b, w ∈ L \ {a} and i ∈ {1, 2, 3}, w ∈ Λ(T
lca(a,b)
i) if and only if

dTi(w) ≤ dTi(b). Thus, for b ∈ L \ {a}, |Λ(T
lca(a,b)
1) ∩ Λ(T

lca(a,b)
2) ∩ Λ(T

lca(a,b)
3)| =

|{w ∈ L \ {a, b} : dT1(w) ≤ dT1(b), dT2(w) ≤ dT2(b), dT3(w) ≤ dT3(b)}|.
Represent each w ∈ L\{a} as a 3D point with coordinates (dT1(w), dT2(w), dT3(w)).

For any b ∈ L\{a}, |Λ(T
lca(a,b)
1)∩Λ(T

lca(a,b)
2)∩Λ(T

lca(a,b)
3)| equals the number of points

on or inside the box [1 : dT1(b)] × [1 : dT2(b)] × [1 : dT3(b)]. Use Corollary 4.1 in [6] for
offline orthogonal range counting in 3D to obtain these numbers for all b ∈ L \ {a} in
O(n log3−2+1/3 n) = O(n log4/3 n) total time. �	

Lemma 9. The values of countr,r,r(a, b) for alla, b ∈ L can be computed inO(n2 log4/3 n)
total time.

420 J. Jansson et al.

3.3 Computing countTi

r,f,f

This subsection describes how to compute all values of countT1
r,f,f (a, b) =

∣
∣{w ∈ L \

{a, b} : ab|w ∈ t(T1), a|b|w ∈ t(T2), and a|b|w ∈ t(T3)}
∣
∣, where a, b ∈ L. (The two

functions countT2
r,f,f and countT3

r,f,f can be computed in the same way.)
Suppose that a ∈ L is fixed. Let v0 = a, v1, . . . , vp be the path in T3 from

leaf a to the root of T3. For j ∈ {1, . . . , p}, define Wj = Λ(T
vj

3) \ Λ(T
vj−1
3). Impor-

tantly, {W1, . . . , Wp} forms a partition of L \ {a}. For any S ⊆ L and b ∈ S, define
σT1,¬T2(S, b) = |{w ∈ S : ab|w ∈ t(T1) and a|b|w ∈ t(T2)}|. Lemma 10 explains how to
use σT1,¬T2(S, b) to compute countT1

r,f,f (a, b).

Lemma 10. For any Wj, j ∈ {1, . . . , p}, and any b ∈ Wj, let cb be the child of vj

such that b ∈ Λ(T
cb
3). Then countT1

r,f,f (a, b) = σT1,¬T2(Wj , b) − σT1,¬T2(Λ(T
cb
3), b).

Lemma 11. After O(n) time preprocessing, given any S ⊆ L, σT1,¬T2(S, b) for all
b ∈ S can be computed in O(|S|) time.

This suggests the following algorithm, which we call Compute count rff T1, for
computing countT1

r,f,f (a, b) for all b ∈ L \ {a} for any fixed a ∈ L. First, it builds
the partition {W1, . . . , Wp} of L \ {a}. This takes O(n) time. Then, T1 and T2 are
preprocessed in O(n) time so Lemma 11 can be applied. For each j ∈ {1, . . . , p},
the algorithm then computes σT1,¬T2(Wj , b) and σT1,¬T2(Λ(T

cb
3), b) for all b ∈ Wj .

By Lemma 11, this step takes O(
∑p

j=1 |Wj |) = O(n) time. (For every b ∈ Wj , to

identify the child cb of vj such that b ∈ Λ(T
cb
3) in O(1) time, one can store the depths

of all nodes in T3 and use the level-ancestor data structure after O(n) time extra
preprocessing [3].) Finally, Lemma 10 is used to obtain countT1

r,f,f (a, b) for every b ∈ Wj

and j ∈ {1, . . . , p} in O(n) time. In total, the time complexity of Compute count rff T1

is O(n). By running Compute count rff T1 once for each a ∈ L, we get countT1
r,f,f (a, b)

for all a, b ∈ L in O(n2) total time.

Lemma 12. For each i ∈ {1, 2, 3}, the values of countTi
r,f,f (a, b) for all a, b ∈ L can be

computed in O(n2) total time.

3.4 Determining if a Given Cluster Is a Strong Cluster When k = 3

Steps 3–5 of R* consensus tree in Section 1.3 need to determine which Apresjan
clusters of sRmaj are strong clusters of Rmaj . This subsection presents a method for
doing so efficiently. Let A ⊆ L. For any j ∈ {1, 2, 3}, a leaf x ∈ L\A is called an outsider
in Tj if x is not a descendant of uj

A in Tj , where uj
A = lcaTj (A). Define the following

two disjoint subsets of L \ A: (i) PA = the set of all x ∈ L \ A such that lcaTj (a, x) is
a proper descendant of uj

A for some a ∈ A and some j ∈ {1, 2, 3}; and (ii) QA = the
set of all x ∈ L \ A such that lcaTj (a, x) = uj

A for all a ∈ A and all j ∈ {1, 2, 3}. (If
|A| = 1 then PA = QA = ∅.) Also define an undirected graph GA = (A, EA), whose
edge set is EA =

{{a, a′} : lcaTj (a, a′) is a proper descendant of uj
A for at least one

j ∈ {1, 2, 3}}. Then we have:

Lemma 13. For any A ⊆ L, A is a strong cluster of Rmaj if and only if: (1) each
x ∈ PA is an outsider in exactly two trees from {T1, T2, T3}; and (2) if QA is nonempty,
the graph GA is a complete graph.

Faster Algorithms for Computing the R* Consensus Tree 421

Procedure Check all Apresjan clusters

Input: A tree A of all Apresjan clusters of sRmaj

Output: A list of all the strong clusters of Rmaj

1: for all nodes v in A in bottom-up order do
2: Let A be the Apresjan cluster of sRmaj corresponding to v;
3: if v is a leaf then
4: /* Without loss of generality, assume A = {a} */
5: Set u1

A = u2
A = u3

A to be the leaf with label a and let GA be a graph with
a single vertex a. Let B1

A = B2
A = B3

A = {A};
6: else
7: Let A1, . . . , Am be the Apresjan clusters corresponding to the children of v

and form GA by merging GA1 , . . . , GAm ;
8: for j = 1, 2, 3 do
9: Update uj

A = lcaTj (uj
A1

, . . . , uj
Am

). Partition A into a set of blocks Bj
A

such that each block B ∈ Bj
A contains all the elements of A that appear

in the same subtree attached to uj
A;

10: Compute ZB =
⋃m

i=1(Bj
Ai

|B) for every block B ∈ Bj
A;

11: for every block B ∈ Bj
A do

12: Insert all edges {x, y} into GA where x ∈ X, y ∈ Y and where X and
Y are two different sets in ZB ;

13: end for
14: end for
15: end if
16: If A satisfies the condition in Lemma 13 then output A;
17: end for

Fig. 3. Procedure for finding all strong clusters of Rmaj

Procedure Check all Apresjan clusters in Fig. 3 applies the condition in
Lemma 13 to find all strong clusters of Rmaj . To avoid building each GA-graph from
scratch, it assumes that the Apresjan clusters are specified in the form of a tree A,
so that the information in the GA-graphs can be reused as it goes upwards in A. (As
mentioned in Section 1.3, A can be obtained in O(n2) time [5].) The procedure builds
the GA-graphs for all Apresjan clusters A bottom-up, according to the given tree A.
Each GA is represented as a set of edges. To simplify the construction, for j = {1, 2, 3},
the procedure maintains uj

A = lcaTj (A). It also maintains Bj
A, which is the partition

of A such that each block B ∈ Bj
A contains all elements in A that appear in one subtree

attached to the node uj
A.

For any set X of subsets of L and any L′ ⊆ L, let X|L′ = {X ∈ X : X ⊆ L′}.

Lemma 14. Procedure Check all Apresjan clusters outputs all strong clusters
of Rmaj in O(n2α(n)) time, where α(n) is the inverse Ackermann function.

4 Computing the R* Consensus Tree for Unbounded k

Section 4.1 computes sRmaj (a, b) for all a, b ∈ L in O(n2 logk n) time. Section 4.2 checks

which Apresjan clusters are strong clusters in O(n2 logk+2 n) time.

422 J. Jansson et al.

4.1 Computing sRmaj
for Unbounded k

Here, we give a procedure that, for any fixed a ∈ L, computes sRmaj (a, b) for all

b ∈ L \ {a} in O(n logk n) time.
Let occ(ab|w, T[i..j]) be the number of occurrences of ab|w in t(Ti), . . . , t(Tj). Denote

sW,x,y,z
T[1..i]

(a, b) =
∣
∣
{
w ∈ W : occ(ab|w, T[1..i]) + x > max{occ(aw|b, T[1..i]) + y, occ(bw|a,

T[1..i]) + z}}∣∣. For a fixed a ∈ L, our goal is to compute sRmaj (a, b) = sL,0,0,0
T[1..k]

(a, b)

for all b ∈ L \ {a}. Note that in the formula for sW,x,y,z
T[1..i]

(a, b), W is not any arbitrary

subset of L; we require, for all w ∈ W , that x, y and z are the number of occurrences
of ab|w, aw|b and bw|a, respectively, in Ti+1, . . . , Tk. These three integers will be used
to pass information during recursive calls.

IneachtreeTi ∈ {T1, . . . , Tk}, anyw ∈ L\{a} is representedbyapair (dTi(w), πi(w)),
wheredTi(w) is thedistance inTi froma to lcaTi(a, w), andπi(w) = j,wherew is a descen-
dant of the jth child of lcaTi(a, w). The occurrence of a triplet in t(Ti) is then given by
(cf. Theorem 1 in [12] and Lemma 7 in [10]):

Lemma 15. Let b ∈ L \ {a}. For any w ∈ L \ {a, b} and i ∈ {1, . . . , k}:
1. ab|w ∈ t(Ti) if and only if dTi(b) < dTi(w);
2. aw|b ∈ t(Ti) if and only if dTi(b) > dTi(w); and
3. bw|a ∈ t(Ti) if and only if dTi(b) = dTi(w) and πi(b) = πi(w).

We build a data structure BW,k in O(|W | logk |W |) time that yields the value
of sW,x,y,z

T[1..k]
(a, b) for any b ∈ W \ {a} and any x, y, z in O(logk |W |) time as follows.

For the base case k = 1, the data structure BW,1 consists of a balanced binary
search tree BT (W, T1) for all distinct dT1(w)-values, where w ∈ W . There may be
multiple elements of W with the same dT1(w)-value. For each such node, we replace
it by a balanced binary search tree for these multiple elements and index them using
the keys π1(w). The additional nodes are called yellow nodes. The data structure BW,1

can be constructed in O(|W |) time.
Now we show how to compute sW,x,y,z

T[1..1]
(a, b) from BW,1. For any b ∈ W , let P be

the path from the root of BT (W, T1) to b. Since BT (W, T1) is balanced, P is of length
O(log |W |). We partition the subtrees attached to P into four sets:

• Wfan is the set of subtrees attached to the yellow nodes of P where π1(b) �= π1(w)
for all leaves w in the subtrees of Wfan.

• Wmid is the set of subtrees attached to the yellow nodes of P where π1(b) = π1(w)
for all leaves w in the subtrees of Wmid.

• Wleft is the set of left subtrees attached to the non-yellow nodes of P .
• Wright is the set of right subtrees attached to the non-yellow nodes of P .

Note that a|b|w ∈ t(T1) for all w ∈ Λ(S) and S ∈ Wfan. Similarly, bw|a ∈ t(T1) for
all w ∈ Λ(S) and S ∈ Wmid. Also, aw|b ∈ t(T1) for all w ∈ Λ(S) and S ∈ Wleft, and
ab|w ∈ t(T1) for all w ∈ Λ(S) and S ∈ Wright.

By the definitions and Lemma 15, sW,x,y,z
T[1..1]

(a, b) = A + B + C + D where:

• A =
∑

S∈Wfan
|Λ(S)| if x > y, x > z; and 0 otherwise.

• B =
∑

S∈Wmid
|Λ(S)| if x > y, x > 1 + z; and 0 otherwise.

• C =
∑

S∈Wleft
|Λ(S)| if x > 1 + y, x > z; and 0 otherwise.

• D =
∑

S∈Wright
|Λ(S)| if x + 1 > y, x + 1 > z; and 0 otherwise.

Faster Algorithms for Computing the R* Consensus Tree 423

Procedure counting query

Input: Integer i ∈ {0, 1, . . . , k}, W ⊆ L, integers x, y, z, leaf b ∈ L \ {a}.
Output: sW,x,y,z

T[1..i]
(a, b)

1: if i = 0 then
2: if x > y and x > z then
3: return |W |;
4: else
5: return 0;
6: end if
7: else
8: Let P be the path from the root of BT (W, Ti) to b;
9: Compute the sets Wfan, Wmid, Wright, Wleft of subtrees attached to P ;

10: A =
∑

S∈Wfan
counting query(i − 1, Λ(S), x, y, z, b);

11: B =
∑

S∈Wmid
counting query(i − 1, Λ(S), x, y, z + 1, b);

12: C =
∑

S∈Wleft
counting query(i − 1, Λ(S), x, y + 1, z, b);

13: D =
∑

S∈Wright
counting query(i − 1, Λ(S), x + 1, y, z, b);

14: return A + B + C + D;
15: end if

Fig. 4. Procedure for computing sW,x,y,z
T[1..i]

(a, b), assuming BW,i is available

There are O(log |W |) subtrees, so we can find sW,x,y,z
T[1..1]

(a, b) in O(log |W |) time.

Next, assume we can create a data structure BW,k−1 from which sW,x,y,z
T[1..k−1]

(a, b)

can be computed in O(logk−1 |W |) time. Then we build the data structure BW,k,
consisting of two parts, as follows. Firstly, similar to the case k = 1, we build a
binary search tree BT (W, Tk). Secondly, for every subtree S in BT (W, Tk), we build
the data structure BΛ(S),k−1. The time required to build BW,k depends on the time
needed for the two parts. For the first part, as shown above, BT (W, Tk) can be con-
structed in O(|W | log |W |) time. For the second part,

∑{|Λ(S)| : S is a subtree
of BT (W, Tk)} = O(|W | log |W |). Since BΛ(S),k−1 can be constructed in O(|Λ(S)|
logk−1 |Λ(S)|) time, the second part takes O(|W | logk |W |) time.

We now discuss how to use BW,k to compute sW,x,y,z
T[1..k]

(a, b). For any b ∈ W , similar

to the case k = 1, first find the path P from the root of BT (W, Tk) to b. There are
O(log |W |) subtrees attached to P . Partition them into the sets Wfan, Wmid, Wleft,
and Wright according to the same criteria as for k = 1 above. Then:

Lemma 16. For any b ∈ W , it holds that sW,x,y,z
T[1..k]

(a, b) = A + B + C + D, where

A =
∑

S∈Wfan
s

Λ(S),x,y,z
T[1..k−1]

(a, b), B =
∑

S∈Wmid
s

Λ(S),x,y,z+1
T[1..k−1]

(a, b), C =
∑

S∈Wleft

s
Λ(S),x,y+1,z
T[1..k−1]

(a, b), and D =
∑

S∈Wright
s

Λ(S),x+1,y,z
T[1..k−1]

(a, b).

Fig. 4 lists the pseudocode of the procedure counting query for computing
sW,x,y,z

T[1..k]
(a, b), given BW,k. The next lemma bounds its running time.

Lemma 17. Given the data structure BW,k for a fixed a ∈ L, for any b ∈ L \ {a},
counting query(k, W, x, y, z, b) computes sW,x,y,z

T[1..k]
(a, b) in O(logk n) time.

424 J. Jansson et al.

4.2 Determining if a Given Cluster Is a Strong Cluster for
Unbounded k

Let A be the tree of all Apresjan clusters. For any A ⊆ L and a, b ∈ A with a �= b,
define sA

Rmaj
(a, b) = |{w ∈ A : ab|w ∈ Rmaj}|. The following lemma allows us to

verify if A is a strong cluster.

Lemma 18. Let A ⊆ L. A is a strong cluster of Rmaj if and only if sRmaj (a, b) =

|L \ A| + sA
Rmaj

(a, b) for all a, b ∈ A with a �= b.

Observe that sA
Rmaj

(a, b) = sA,0,0,0
T[1..k]

(a, b), using the notation from Section 4.1. For

any fixed a ∈ L, the next lemma gives a data structure for computing sA
Rmaj

(a, b) in

O(logk+1 n) time for any cluster A ∈ A and b ∈ A \ {a}.

Lemma 19. For any a ∈ L, we can construct a data structure in O(n logk+1 n) time
which enables us to compute sA

Rmaj
(a, b) = sA,0,0,0

T[1..k]
(a, b) in O(logk+1 n) time for any

cluster A ∈ A that contains the element a and any b ∈ A \ {a}.

Lemma 20. If a node u in A satisfies sRmaj (a, b) = |L\Λ(Au)| + s
Λ(Au)
Rmaj

(a, b), then,

for every ancestor u′ of u, sRmaj (a, b) = |L \ Λ(Au′
)| + s

Λ(Au′
)

Rmaj
(a, b) holds.

Thus, A contains a node ua,b
min such that sRmaj (a, b) = |L \ Λ(Au)| + s

Λ(Au)
Rmaj

(a, b)

for any ancestor u of ua,b
min. In fact, ua,b

min can be found in O(logk+2 n) time:

Lemma 21. Given the data structure in Lemma 19, ua,b
min for any b ∈ L can be found

in O(logk+2 n) time.

Finally, we describe the procedure Verify strong clusters for checking which clus-
ters in A are strong clusters. See Fig. 5 for the pseudocode. First, initialize count(u) = 0
for every node u in A. Then, compute ua,b

min for all a, b ∈ L using Lemma 21, and increase

Procedure Verify strong clusters

Input: A tree A of all Apresjan clusters of sRmaj

Output: A tree including all strong clusters of Rmaj

1: Set count(u) = 0 for all nodes u in A;
2: for a, b ∈ L do
3: Find ua,b

min by Lemma 21 and set count(ua,b
min) = count(ua,b

min) + 1;
4: end for
5: Set sum(u) = 0 for all leaves u in A;
6: for every internal node u ∈ A in bottom-up order do
7: Set sum(u) = count(u) +

∑{
sum(c) : c is a child of u in A};

8: if sum(u) <
(|Λ(Au)|

2

)
then

9: Contract node u; /* Λ(Au) is not a strong cluster */
10: end if
11: end for
12: return A;

Fig. 5. Procedure for checking which Apresjan clusters are strong clusters

Faster Algorithms for Computing the R* Consensus Tree 425

each count(ua,b
min) by 1. Next, set sum(u) to be the total sum of count(v) for all descen-

dants v of u in A. By Lemma 22 below, if sum(u) =
(|Λ(Au)|

2

)
then Λ(Au) is a strong

cluster; otherwise, it is not. In case Λ(Au) is not a strong cluster, contract u in A (that
is, attach all children of u to the parent of u in A and remove the node u). By Lemmas 19
and 21, the running time of Verify strong clusters is O(n2 logk+2 n).

Lemma 22. For any node u in A, Λ(Au) is a strong cluster if and only if sum(u) =(|Λ(Au)|
2

)
.

References

1. Bansal, M.S., Dong, J., Fernández-Baca, D.: Comparing and aggregating partially
resolved trees. Theoretical Computer Science 412(48), 6634–6652 (2011)

2. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000)

3. Bender, M.A., Farach-Colton, M.: The Level Ancestor Problem simplified. Theo-
retical Computer Science 321(1), 5–12 (2004)

4. Bryant, D.: A classification of consensus methods for phylogenetics. In: Janowitz,
M.F., Lapointe, F.-J., McMorris, F.R., Mirkin, B., Roberts, F.S. (eds.) Bioconsen-
sus. DIMACS Series in Discrete Mathematics and Theoretical Computer Science,
vol. 61, pp. 163–184. American Mathematical Society (2003)

5. Bryant, D., Berry, V.: A structured family of clustering and tree construction
methods. Advances in Applied Mathematics 27(4), 705–732 (2001)

6. Chan, T.M., Pǎtraşcu, M.: Counting inversions, offline orthogonal range counting,
and related problems. In: Proceedings of the 21st Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA 2010), pp. 161–173. SIAM (2010)

7. Degnan, J.H., DeGiorgio, M., Bryant, D., Rosenberg, N.A.: Properties of consensus
methods for inferring species trees from gene trees. Systematic Biology 58(1),
35–54 (2009)

8. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc., Sunderland (2004)
9. Harel, D., Tarjan, R.E.: Fast algorithms for finding nearest common ancestors.

SIAM Journal on Computing 13(2), 338–355 (1984)
10. Jansson, J., Sung, W.-K.: Constructing the R* consensus tree of two trees in sub-

cubic time. Algorithmica 66(2), 329–345 (2013)
11. Kannan, S., Warnow, T., Yooseph, S.: Computing the local consensus of trees.

SIAM Journal on Computing 27(6), 1695–1724 (1998)
12. Lee, C.-M., Hung, L.-J., Chang, M.-S., Shen, C.-B., Tang, C.-Y.: An improved

algorithm for the maximum agreement subtree problem. Information Processing
Letters 94(5), 211–216 (2005)

13. Sung, W.-K.: Algorithms in Bioinformatics: A Practical Introduction. Chapman &
Hall/CRC (2010)

	Faster Algorithms for Computing the R* Consensus Tree
	1 Introduction
	1.1 Definitions and Notation
	1.2 Previous Work
	1.3 Overview and Organization of the Paper

	2 Computing the R* Consensus Tree When k = 2
	3 Computing the R* Consensus Tree When k = 3
	3.1 Computing sRmaj When k = 3
	3.2 Computing countr,r,r
	3.3 Computing countr,f,fTi
	3.4 Determining if a Given Cluster Is a Strong Cluster When k = 3

	4 Computing the R* Consensus Tree for Unbounded k
	4.1 Computing sRmaj for Unbounded k
	4.2 Determining if a Given Cluster Is a Strong Cluster for Unbounded k

	References

