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To construct a phylogenetic tree or phylogenetic network for describing the evolutionary
history of a set of species is a well-studied problem in computational biology. One pre-
viously proposed method to infer a phylogenetic tree/network for a large set of species
is by merging a collection of known smaller phylogenetic trees on overlapping sets of
species so that no (or as little as possible) branching information is lost. However, little
work has been done so far on inferring a phylogenetic tree/network from a specified
set of trees when in addition, certain evolutionary relationships among the species are
known to be highly unlikely. In this paper, we consider the problem of constructing a
phylogenetic tree/network which is consistent with all of the rooted triplets in a given
set C and none of the rooted triplets in another given set F . Although NP-hard in the
general case, we provide some efficient exact and approximation algorithms for a number
of biologically meaningful variants of the problem.

Keywords: Phylogenetic network construction; rooted triplet; galled network; NP-
hardness; algorithm.

1. Introduction

The evolutionary relationships among a set of species S are commonly described
by a phylogenetic tree or a phylogenetic network. A phylogenetic tree is a rooted,
unordered tree whose leaves are distinctly labeled by S and where each inter-
nal node represents an ancestral species and each edge represents the evolution
from one species to another (see e.g. in Refs. 19 and 25). However, scientists have
observed that certain evolutionary events cannot be described properly using the
treelike model; examples of these so-called recombination events include horizontal

§Wing-Kin Sung is also affiliated with Genome Institute of Singapore, 60 Biopolis Street, Genome,
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gene transfer and hybrid speciation.10,12,20,21,23,27 Phylogenetic networks were pro-
posed as a way to represent non-treelike evolution by extending the definition of
phylogenetic trees to allow nodes to have more than one parent.

One approach to constructing large phylogenetic trees/networks is by combining
a set of known trees into one supertree/network.3,4,11,12,14,17,18,21,22,24,26 In this
paper, we focus on the problem of constructing a phylogenetic tree/network from
rooted triplets (i.e. binary phylogenetic trees with exactly three leaves each). Vari-
ants of this problem have been studied previously in Refs. 1, 5, 8, 9, 11, 13–17 and
28. The motivation for the rooted triplets approach is that a highly accurate tree for
just three species can be obtained through maximum likelihood-based methods6 or
Sibley-Ahlquist-style DNA-DNA hybridization experiments (see Ref. 17). Moreover,
when applying those methods, apart from obtaining a set of reliable rooted triplets,
we may also discover some rooted triplets (referred to as forbidden rooted triplets)
which are very unlikely to appear as induced subtrees in the true tree/network.
Other than Refs. 5 and 22, little work has been done to study whether the extra
information provided by forbidden rooted triplets can be used in phylogenetic recon-
struction. Therefore, in this paper, we investigate some problems related to con-
structing a phylogenetic tree or a phylogenetic network from a given set C of “good”
rooted triplets and a given set F of forbidden rooted triplets.

1.1. Problem definitions and summary of our results

A phylogenetic tree is a rooted, unordered tree whose leaves are labeled in such
a way that all leaf labels are disjoint, and furthermore, all of its internal nodes
have outdegree at least 2. A rooted tree is binary if all of its internal nodes have
precisely outdegree 2. A binary phylogenetic tree with three leaves is called a rooted
triplet. The unique rooted triplet on a leaf set {x, y, z} in which the lowest common
ancestor of x and y is a proper descendant of the lowest common ancestor of x

and z (or equivalently, where the lowest common ancestor of x and y is a proper
descendant of the lowest common ancestor of y and z) is denoted by ({x, y}, z). A
binary caterpillar tree is a rooted binary tree where every internal node has at least
one child which is a leaf.

A phylogenetic network is a generalization of a binary phylogenetic tree for-
mally defined as a rooted, directed acyclic graph where: (1) exactly one node has
indegree 0 (the root); (2) all other nodes have indegree 1 or 2; (3) all nodes with
indegree 2 (referred to as hybrid nodes) have outdegree 1, and all other nodes
have outdegree 0 or 2; and (4) all nodes with outdegree 0 (the leaves) are dis-
tinctly labeled. For any phylogenetic network N , let U(N) be the undirected graph
obtained from N by replacing each directed edge by an undirected edge. N is
said to be a galled phylogenetic network (or galled network, for short) if all cycles
in U(N) are node-disjoint. Galled networks form an important class of phyloge-
netic networks and have attracted special attention in the literature7,10,21,27 due
to their biological significance and their simple, almost treelike, structure. When
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the number of recombination events is limited and most of the recombination events
have occurred recently, a galled network may suffice to accurately describe the evo-
lutionary process under study.10 Galled networks are also known in the literature
as topologies with independent recombination events,27 galled-trees,10 gt-networks,21

and level-1 phylogenetic networks.7,16

Let N be a phylogenetic network. A rooted triplet t is said to be consistent
with N if t is an embedded subtree of N , and a set C of rooted triplets is consistent
with N if every rooted triplet in C is consistent with N . The set of all rooted
triplets which are consistent with N is denoted by R(N), and we let N(C) be the
subset of C containing all rooted triplets from C that are consistent with N , i.e.
N(C) = C ∩R(N).

Denote the set of leaves in a phylogenetic tree/network N by Λ(N), and for any
set C of rooted triplets, define Λ(C) =

⋃
t∈C Λ(t). Given a leaf set L, a set C of rooted

triplets is called dense (with respect to L) if Λ(C) = L and for each {x, y, z} ⊆ L, at
least one of the three possible rooted triplets ({x, y}, z), ({x, z}, y), and ({y, z}, x)
belongs to C. Finally, for any set C of rooted triplets and L′ ⊆ Λ(C), we define C |L′

as the subset of C consisting of all rooted triplets ({x, y}, z) with {x, y, z} ⊆ L′.
Given two sets C and F of rooted triplets, we study the following problems.

Throughout this paper, we let L represent the leaf set Λ(C) ∪ Λ(F) and we write
n = |L|.
• The mixed triplets problem (MT): Construct a phylogenetic network N with

Λ(N) = L such that C ⊆ R(N) and F ∩ R(N) = ∅, if such an N exists;
otherwise, output null. In Sec. 3.1, we show that this problem is NP-hard in its
general form. In Sec. 3.2, we investigate a restricted case of the problem where
F consists of disjoint rooted triplets, i.e. where Λ(t) ∩ Λ(t′) = ∅ for any t, t′ ∈ F
with t �= t′, and show how to solve this case efficiently in O(n log n) time.

• The mixed triplets problem restricted to trees (MTT): Construct a phylogenetic
tree T with Λ(T ) = L such that C ⊆ R(T ) and F ∩R(T ) = ∅, if such a T exists;
otherwise, output null. Note that T is not required to be a binary phylogenetic
tree here. In Sec. 2.1, we describe an O(|C| · n + |F| · n logn + n2 log n)-time
algorithm for MTT. We also study a corresponding maximization problem that
we call MMTT which asks for a phylogenetic tree T that maximizes |T (C)| −
|T (F)|.a MMTT is NP-hard,b so we present a polynomial-time algorithm for
inferring a phylogenetic tree T that guarantees |T (C)|− |T (F)| ≥ 1/3 · (|C|− |F|)
in Sec. 2.2.

• The mixed triplets problem restricted to galled networks (MTG): Construct a
galled network N with Λ(N) = L such that C ⊆ R(N) and F ∩R(N) = ∅, if such
an N exists; otherwise, output null. This problem is NP-hard even if restricted
to F = ∅;15 therefore, MTG for arbitrary F is also NP-hard. In Sec. 4, we study

aThis problem is useful when there is no phylogenetic tree T such that C ⊆ R(T ) and F ∩
R(T ) = ∅.
bWhen F = ∅, Bryant5 showed that this problem is NP-hard, so the problem is also NP-hard for
any F .
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the maximization version of MTG called MMTG and give a polynomial-time
algorithm for inferring a galled network N that guarantees |N(C)| − |N(F)| ≥
5/12 · (|C| − |F|).

Below, the elements in F are called forbidden rooted triplets.

1.2. Related results

Several papers have previously studied MT, MTT, MMTT, MTG, MMTG, and
some of their variants for the special case F = ∅. Aho, Sagiv, Szymanski, and
Ullman1 presented an O(|C| · n)-time algorithm for determining whether a given
set C of rooted triplets on n leaves is consistent with some rooted, distinctly leaf-
labeled tree, and if so, returning one (i.e. MTT restricted to F = ∅).c Henzinger,
King, and Warnow11 later showed how to implement the algorithm of Aho et al.
to run asymptotically faster. Ga̧sieniec, Jansson, Lingas, and Östlin8 considered a
version of the problem where the leaves in the output tree are required to comply
with a left-to-right leaf ordering given as part of the input. Related optimization
problems where the objective is to construct a rooted tree consistent with the
maximum number of rooted triplets in the input (i.e. MMTT with F = ∅) or to find
a maximum cardinality subset L′ of Λ(C) such that C |L′ is consistent with some tree
have been studied in Refs. 5, 9, 13, 28 and 14, respectively. We remark that MMTT
with F = ∅ is NP-hard (see Refs. 5, 13, or 28) and approximable within a factor
of 1/3 in polynomial time9 (meaning that the approximation algorithm in Ref. 9
always outputs a phylogenetic tree which is consistent with at least 1/3 · |C| of the
rooted triplets in C).

As for inferring a phylogenetic network from a given set of rooted triplets on
n leaves (i.e. MT with F = ∅), Jansson and Sung16 proved that if no restrictions
are placed on the structure of the output phylogenetic network then the problem
always has a solution which can easily be obtained from any given sorting network
for n elements. Reference 16 also presented an O(n6)-time algorithm for inferring
a galled network (if one exists) consistent with a given dense set of rooted triplets
on n leaves; Jansson, Nguyen, and Sung15 subsequently reduced its running time
to O(n3), which is optimal since the size of the input is O(n3) in the dense case.
In Ref. 15, it was also proved that the problem becomes NP-hard for non-dense
inputs (i.e. MTG with F = ∅), and that the corresponding optimization problem
(MMTG with F = ∅) is approximable within a factor of 5/12 in polynomial time.

Also in the context of inferring a phylogenetic network from a set of trees,
Nakhleh, Warnow, and Linder21 gave an algorithm for inferring a galled network
from two binary phylogenetic trees with identical leaf sets. In addition, they studied
the case where the input trees may contain errors but where only one hybrid node is

cIn contrast, the analog of this problem for unrooted trees is NP-hard, even if all of the input
trees are quartets (unrooted, distinctly leaf-labeled trees each having four leaves and no nodes of
degree two).26 See also Ref. 18.
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allowed in the network. Huson, Dezulian, Klöpper, and Steel12 addressed a similar
problem for constructing an unrooted phylogenetic network from a set of unrooted,
distinctly leaf-labeled trees.

For the case F �= ∅, less is known. Bryant5 showed that MTT restricted to C = ∅
is NP-hard if the output is required to be a binary tree, but solvable in polynomial
time if we further restrict the solution to be a binary caterpillar tree. However,
given a set S of binary phylogenetic caterpillar trees whose leaf sets are subsets of a
label set L, it is NP-hard to determine if there exists a binary tree T with Λ(T ) = L

such that no tree in S is an embedded subtree of T , even if T is restricted to be a
binary caterpillar tree.22

1.3. The algorithm of Aho, Sagiv, Szymanski and Ullman

Here, we briefly review the algorithm of Aho et al.1 for determining if a given set C of
rooted triplets with leaf set L is consistent with a rooted tree, and if so, constructing
one. (Please refer to Ref. 1 for correctness proofs.) For any subset L′ of the leaves
in L, define the auxiliary graph for L′, denoted by G(L′), as the undirected graph
with vertex set L′ and edge set E(L′), where for every ({i, j}, k) ∈ C that satisfies
i, j, k ∈ L′, the edge {i, j} is included in E(L′).

Given a set C, the algorithm of Aho et al. builds G(L) and calculates the con-
nected components A1, . . . , Aq of G(L). If q ≥ 2, the algorithm recursively con-
structs a tree for each connected component, attaches these trees to a common
parent node, and returns the resulting tree; the q recursive calls to itself are done
on the sets C1, . . . , Cq obtained by scanning C (for 1 ≤ p ≤ q, let Lp be the set of
leaves in Ap, and for each ({i, j}, k) ∈ C, if {i, j, k} ⊆ Lp then ({i, j}, k) is placed in
Cp; otherwise it is deleted). Otherwise, there is just one connected component A1. If
A1 consists of a single leaf i, the algorithm returns a tree with one leaf labeled by i.
If A1 contains more than one leaf, the algorithm aborts its execution and returns
null since no tree can be consistent with all of the rooted triplets in this case.

At each of the O(n) recursion levels, the total time required to build all auxil-
iary graphs and to find their connected components is O(|C|). Scanning the rooted
triplets to compute the sets Cp also takes O(|C|) time on each level. Therefore, this
implementation has a running time of O(|C| · n).

2. Algorithms for MTT and MMTT

In Sec. 2.1, we present a polynomial-time algorithm for MTT. Then in Sec. 2.2, we
describe an approximation algorithm for the corresponding maximization problem
MMTT.

2.1. A polynomial-time algorithm for MTT

Our algorithm is a generalization of the algorithm of Aho et al.1 (see Sec. 1.3) for
determining if a given set C of rooted triplets is consistent with a rooted tree and if
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so, constructing one. We extend their algorithm to deal with a nonempty set F of
forbidden rooted triplets. Note that if the output tree is constrained to be binary
then the problem becomes NP-hard even if C = ∅ (see Sec. 1.2).

To handle forbidden rooted triplets, for any subset L′ of L, we define the auxil-
iary partition D(L′) of L′ as follows:

i. Initially, let D = {D1, . . . ,Dq} be a partition of L′ such that each subset Di

consists of the set of nodes in one connected component of the auxiliary graph
G(L′) for L′ (the auxiliary graph is defined in Sec. 1.3).

ii. While there exists some ({i, j}, k) in F|L′ such that i and j are in one subset
Da ∈ D and k is in another subset Db ∈ D, let D = (D\{Da,Db})∪{Da∪Db}.

iii. Set D(L′) = D.

Our algorithm proceeds as follows. Given C and F , we build D(L) for L. Let
D(L) = {D1, . . . ,Dr}. If r ≥ 2, we recursively construct a tree for each subset Di,
then attach these trees to a common parent node, and return the resulting tree.
Otherwise, there is just one component D1. If D1 consists of a single leaf i, we return
a tree which is a leaf labeled by i. If D1 contains more than one leaf, we return null
and conclude that there is no tree that is consistent with all of the rooted triplets
in C and none of the rooted triplet in F . The algorithm is shown in Fig. 1.

Lemma 1. Let T be any tree that is consistent with all rooted triplets in C and no
rooted triplet in F . Then two leaves in the same set in D(L) cannot be descendants
of two different children of the root of T .

Proof. We prove by induction on the construction of D(L). Right after step (i) in
the construction, two leaves in the same set in D belong to the same connected
component in G(L). Therefore, by the correctness of Aho et al. algorithm, they
cannot be descendants of two different children of the root of T ; otherwise, T

would be not consistent with all rooted triplets in C.
At step (ii), suppose that we are considering a rooted triplet ({i, j}, k) in F such

that i and j belong to the same set Da in D and k belongs to a different set Db and
hence, we are going to merge Da and Db into one single set. By induction, leaves

Fig. 1. An exact algorithm for solving MTT.
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i and j (and all other leaves in Da) must be descendants of a child c of the root
of C. If k is not a descendant of c in T , then T would be consistent with ({i, j}, k).
Hence, k is a also a descendant of c and so are all other leaves in Db. Thus, all
leaves in Da and Db are descendants of the same children of the root of T .

Lemma 2. Suppose there exists a tree T that is consistent with all rooted triplets
in C and no rooted triplet in F . Let L′ be any nonempty subset of L, then there
exists a tree T ′ that is consistent with all rooted triplets in C|L′ and no rooted triplet
in F|L′.

Proof. Let T ′ = T |L′. It is easy to see that a rooted triplet t with Λ(t) ⊆ L′ is
consistent with T if and only if it is consistent with T ′. Then all rooted triplets in
C|L′ are consistent with T ′ while no rooted triplet in F|L′ is consistent with T ′.

Lemma 3. The auxiliary partition D(L) can be constructed in O(|C|+ |F|· log n+
n log n) time.

Proof. Step (i) of the construction of D(L) can be done in O(|C|) time as in the
algorithm of Aho et al.1 (see Sec. 1.3). To do step (ii), we maintain a set S containing
a subset of F such that S =

{
({x, y}, z) | ({x, y}, z) ∈ F and x and y are in one

subset Da ∈ D and z is in another subset Db ∈ D}
. While S is nonempty, we

choose any triplet ({x, y}, z) in S, combine the two corresponding subsets in D that
contain x, y, and z, and update S accordingly. When S is empty, step (ii) is done.

To maintain S in step (ii), we just need to update S whenever we combine two
subsets in D into a single set, since this is the only time that rooted triplets in F
may need to be removed from or inserted into S. Associated with each leaf u in L

is a list L(u) of all forbidden rooted triplets in F that u belongs to (thus, every
forbidden triplet occurs in three different lists and the total length of all lists is
O(|F|)). When two subsets Da and Db are to be combined, we update all leaves in
the smaller of the two subsets, say Da, so that they all belong to Db. Moreover, by
traversing L(u) for all u that belonged to Da, we locate every rooted triplet in F
that might need to be removed from or inserted into S, and update S accordingly.
Every leaf is updated at most O(log n) times in total since we always update the
smaller subset, and hence, every list is traversed at most O(log n) times throughout
the construction. Therefore, step (ii) can be done in O(|F| · log n + n log n) time.

The lemma follows.

Theorem 1. Algorithm MTT outputs a phylogenetic tree T distinctly leaf-labeled
by L that is consistent with all rooted triplets in C and no rooted triplets in F , if
one exists, in O(|C| · n + |F| · n log n + n2 log n) time.

Proof. If Algorithm MTT outputs a non-null tree T then by the correctness of
the algorithm of Aho et al., T is consistent with all rooted triplets in C (since for
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any L′ ⊆ L, the set of nodes in any connected component of G(L′) is a subset of
some set in D(L′)). Next, let f = ({i, j}, k) be any rooted triplet in F and assume
that f is consistent with T . Then, at some recursion level of the algorithm where
i, j, k are still in the same leaf set, i and j will belong to one subset Da while k is in
another subset Db. But this is impossible by step (ii) in the construction of D(L).
Hence, we arrive at contradiction and f is not consistent with T .

Similarly, if the algorithm outputs null then at some recursion level, D(L) has
just one element D1, where D1 contains at least two leaves. Suppose there exists
a phylogenetic tree T ∗ such that all rooted triplets in C|D1 are consistent with T ∗

while no rooted triplets in F|D1 is consistent with T ∗. By Lemma 1, two leaves in
the same set Da cannot be descendants of two different children of the root of T ∗.
But since there is just one set D1, the root of T ∗ would only have one child, which is
a contradiction. Hence, there is no such T ∗. By Lemma 2, there is no phylogenetic
tree that is consistent with all rooted triplets in C and no rooted triplets in F .

There are O(n) recursion levels, each of which is taken care of in O(|C| + |F|·
log n + n log n) time by Lemma 3. Thus, the algorithm’s total running time is
O(|C|·n + |F| · n log n + n2 log n).

2.2. A polynomial-time approximation algorithm for MMTT

MMTT restricted to F = ∅ is NP-hard (see Refs. 5, 13 and 28), so it follows
trivially that the unrestricted version of MMTT is NP-hard. Therefore, we pro-
vide a polynomial-time approximation algorithm for MMTT, which generalizes the
following result from Ref. 9.

Lemma 4. 9Given a set C of rooted triplets with leaf set L, a phylogenetic tree
distinctly leaf-labeled by L that is consistent with at least one third of the rooted
triplets in C can be constructed in O((|C| + n) · log n) time.

Theorem 2. Given two sets C and F of rooted triplets with leaf set L, a phyloge-
netic tree T distinctly leaf-labeled by L such that |T (C)|− |T (F)| ≥ 1/3 · (|C|− |F|)
can be constructed in O((|C| + |F| + n) · log n) time.

Proof. We describe an algorithm to construct such a tree T . For every v ∈ L,
we associate a score with v, denoted by s(v). Initially, s(v) is set to zero for every
v ∈ L. Then, for every ({a, b}, c) ∈ C, we increase s(c) by one and decrease each of
s(a) and s(b) by 1/2 and for every ({a′, b′}, c′) ∈ F , we decrease s(c′) by one and
increase each of s(a′) and s(b′) by 1/2. Next, assume u ∈ L has the largest score.
Let L′ = L \ {u}. Then we recursively construct a tree T ′ with leaf set L′ such
that |T ′(C|L′)| − |T ′(F|L′)| ≥ 1/3 (|C|L′| − |F|L′|) (if L′ consists of only two leaves
L′ = {v, w}, then we construct T ′ to be a binary tree on these two leaves), attach
the root of T ′ and leaf u to a common parent node and let T be the resulting tree.

To prove the correctness of the algorithm, let Cu = {t | t ∈ C and u ∈ Λ(t)}
and Fu = {t | t ∈ F and u ∈ Λ(t)}. It remains to show that |T (Cu)| − |T (Fu)| ≥
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1/3 · (|Cu| − |Fu|). Let C′
u = T (Cu), C′′

u = Cu \ C′
u, F ′

u = T (Fu), and F ′′
u = Fu \ F ′

u.
Hence C′

u =
{
({x, y}, u) | ({x, y}, u) ∈ C}

and F ′
u =

{
({x, y}, u) | ({x, y}, u) ∈ F}

.
Thus, we can write s(u) = |C′

u| − 1/2 · |C′′
u | − |F ′

u| + 1/2 · |F ′′
u |. Since we choose

a leaf u which has the largest score, it is easy to see that s(u) ≥ 0. Therefore,
|C′

u| − |F ′
u| ≥ 1/2 · (|C′′

u | − |F ′′
u |). By adding 1/2 · (|C′

u| − |F ′
u|) to both sides of

the inequality and using |C′
u| + |C′′

u | = |Cu| and |F ′
u| + |F ′′

u | = |Fu|, we obtain
|T (Cu)| − |T (Fu)| ≥ 1/3 · (|Cu| − |Fu|).

We can use a heap data structure to keep track of the changes in the scores
of the leaves throughout the algorithm. The total running time becomes O((|C| +
|F| + n) · log n).

Also note that any phylogenetic tree produced by the algorithm above is always a
binary tree (in fact, a binary caterpillar tree) and that any binary phylogenetic tree
whose leaf set includes {a, b, c} is consistent with exactly one of ({a, b}, c), ({a, c}, b),
and ({b, c}, a). This means that if C =

{
({a, b}, c), ({a, c}, b), ({b, c}, a) | ({a, b}, c) ∈

S
}

and F =
{
({a, b}, c), ({a, c}, b), ({b, c}, a) | ({a, b}, c) ∈ S′}, where S, S′ ⊆{

({a, b}, c) | a, b, c ∈ L
}
, then |T (C)| = 1/3 |C| and |T (F)| = 1/3 |F|. Hence,

|T (C)| − |T (F)| = 1/3 · (|C| − |F|) for any binary phylogenetic tree T with leaf
set L. In this sense, the approximation algorithm is worst-case optimal.d

Note that for the special case where C is empty, we have |T (F)| ≤ 1/3 · |F|, i.e.
the algorithm produces a binary tree that is consistent with at most one third of
the rooted triplets in F .

3. NP-Hardness of MT and a Polynomial-Time Algorithm
for a Special Case

Section 3.1 shows the NP-completeness of MT. Then in Sec. 3.2, we show that a
restricted case of MT can be solved efficiently.

3.1. NP-hardness of MT

To prove the NP-hardness of the general case of MT, we give a polynomial-time
reduction from the following problem called the forbidden rooted triplets prob-
lem (FT): Given a set S of rooted triplets, is there a binary, rooted, distinctly
leaf-labeled tree T that satisfies Λ(T ) = Λ(S) and S ∩ R(T ) = ∅? FT was shown
to be NP-hard by Bryant.5

Theorem 3. MT is NP-hard.

Proof. For any instance S of FT, construct an instance of MT by setting C = ∅
and F = S. We claim that there exists a solution T for FT if and only if there
exists a solution N for MT.

dBryant5 shows that the mixed triplet problem is NP-hard when C = ∅ and the phylogenetic
structure is restricted to binary tree. Hence, this restricted case is also NP-hard for any C.
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(→) If the first part of the statement holds, then the second part is trivially
true because T is also a phylogenetic network.

(←) From N , we construct T as follows: For each hybrid node in N , remove
one of its two incoming edges. Then, for each node with outdegree 1 and indegree
less than 2, contract its outgoing edge. Let T be the obtained tree. It is easy to see
that R(T ) ⊆ R(N). Then since N is consistent with no triplet in F , so is T and
the claim follows.

3.2. An O(n log n)-time algorithm for MT with disjoint forbidden

rooted triplets

Although MT is NP-hard, this section shows that it can be solved efficiently if
the forbidden rooted triplets are disjoint (meaning that Λ(t) ∩ Λ(t′) = ∅ for any
t, t′ ∈ F with t �= t′). Our algorithm is based on the following lemma from Ref. 16.

Lemma 5. 16For any set L of n leaf labels, a phylogenetic network N satisfying
R(N) =

{
({x, y}, z) | x, y, z ∈ L

}
can be constructed in O(s(n)) time, where s(n)

is the time required to construct a sorting network for n elements.

By employing, e.g. an AKS sorting network (see Ref. 2), we obtain s(n) =
O(n log n) in Lemma 5 above. Now, suppose F is a given set of f disjoint
forbidden rooted triplets and write F =

{
({a1, b1}, c1), . . . , ({af , bf}, cf)

}
. Let

P = {p1, q1, . . . , pf , qf} be a set of labels not belonging to L. We build a phy-
logenetic network N as follows.

(1) Use Lemma 5 to construct a phylogenetic network N ′ which is consistent with
all rooted triplets in

{
({x, y}, z) | x, y, z ∈ ((L\Λ(F))∪P )

}
in O(n log n) time.

(2) For each ({ai, bi}, ci) ∈ F , make ai be a child of pi, bi a child of qi, and ci a
child of both pi and qi in N ′. Let N be the resulting network.

Then, N can be constructed in O(n log n) time and has the following property.

Lemma 6. For any C ⊆ {
({x, y}, z) | x, y, z ∈ L

} \ F , C ⊆ R(N). Furthermore,
F ∩R(N) = ∅.

Proof. Let t be any rooted triplet in the set C. There are three possible cases.

• ∣
∣Λ(t) ∩ {ai, bi, ci}

∣
∣ ≤ 2 for any 1 ≤ i ≤ |F|. Note that, by the construction of

N , for any S ⊂ {ai, bi, ci} and |S| ≤ 2, there are always |S| disjoint paths from
{pi, qi} to S in N . Since any rooted triplet on the leaf set (L \ Λ(F)) ∪ P is
consistent with N ′, t is consistent with N .

• t = ({bi, ci}, ai) for some 1 ≤ i ≤ |F|. Since both bi and ci are children of qi and
ai is a child of pi, t is consistent with N .

• t = ({ai, ci}, bi) for some 1 ≤ i ≤ |F|. Since both ai and ci are children of pi and
bi is a child of qi, t is consistent with N .
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Since t ∈ R(N) for any t ∈ C, we have C ⊆ R(N).
Next, we show that F ∩ R(N) = ∅. Consider any ({ai, bi}, ci) ∈ F . By the

construction of N , the lowest common ancestor of ai and bi is the lowest common
ancestor of pi and qi. Since pi and qi are the only parents of ci, the lowest common
ancestor of ai and bi cannot be a descendant of that of ai and ci. Hence, ({ai, bi}, ci)
is not consistent with N .

Hence, we have the following result.

Theorem 4. MT with disjoint forbidden triplets can be solved in O(n log n)
time.

4. A Polynomial-Time Approximation Algorithm for MMTG

Here, we need the following additional terminology. Let N be a phylogenetic network
and let h be a hybrid node in N . Every ancestor s of h such that h can be reached
using two disjoint directed paths starting at the children of s is called a split node
of h. If s is a split node of h then any path starting at s and ending at h is called
a merge path of h or a merge path from s. Observe that in a galled network, each
split node is a split node of exactly one hybrid node, and each hybrid node has
exactly one split node. For any node u in N , N [u] denotes the subnetwork of N

rooted at u, i.e. the minimal subgraph of N which includes all nodes and directed
edges of N reachable from u. N [u] is called a side network of N if there exists a
merge path P in N such that u does not belong to P but u is a child of a node
belonging to P . In this case, N [u] is also said to be attached to P .

Jansson, Nguyen and Sung15 proposed a 5/12-approximation algorithm for a
restricted case of MMTG where F = ∅. In this section we extend their algorithm
to arbitrary F . Given two sets of rooted triplets C and F , this section presents
an algorithm for inferring a galled phylogenetic network N such that |N(C)| −
|N(F)| ≥ 5/12 (|C| − |F|). We describe the algorithm first and then present the
analysis.

Similar to the original algorithm in Ref. 15, our algorithm MMTG(C,F) is
recursive in nature. It is shown in Fig. 2. First, it partitions the set of leaves L into
three subsets A, B, C such that none of them equals L using algorithm LeafPartition
(also shown in Fig. 2 and described in detail later). Then, for each X ∈ {A, B, C}, it
recursively infers a galled network KX by calling MMTG(C|X,F|X). Next, for each
X ∈ {A, B, C}, it generates a galled network NetworkX such that the root node is
a split node whose hybrid node is the parent of KX , and the other two networks in
{KA, KB, KC}\{KX} are side networks attached to both side of the merge paths
of h. Finally, we return the network NetworkZ that maximizes |NetworkZ (C)| −
|NetworkZ (F)|.

To partition L into three sets A, B, and C in step 1 of the algorithm, we partition
L so that a special condition 4(N1−M1)+7(N2−M2)+12(N3−M3) ≥ 5 · (|C|−|F|)
holds, where for i ∈ {0, 1, 2, 3}, we define Ni = |Xi(A, B, C)| and Mi = |Yi(A, B, C)|
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Fig. 2. An approximation algorithm for MMTG.

and where Xi(A, B, C) and Yi(A, B, C) are sets defined as follows:

• X0(A, B, C) = {({x, y}, z) ∈ C|x and z are in one set and y is in another or y

and z are in one set and x is in another},
• X1(A, B, C) = {({x, y}, z) ∈ C|x, y and z are in one set},
• X2(A, B, C) = {({x, y}, z) ∈ C|x, y and z are in three different sets}, and
• X3(A, B, C) = {({x, y}, z) ∈ C|x and y are in one set and z is in another}.
Yi(A, B, C) is defined analogously, using F instead of C. We use a greedy algorithm
to perform the partitioning. It first randomly divides L into three arbitrary subsets.
Then, the algorithm keeps moving leaves from one subset to another until the
score, score(A, B, C) cannot be further improved, where we define score(A, B, C) =
4(N1 − M1) + 7(N2 − M2) + 12(N3 − M3). After finished moving the leaves, if
one of the set, says A, equals L, we move the node u that maximizes pC(u)−pF (u)

cC(u)−cF (u)

from A to B, where cG(u) = |{({u, x}, y) ∈ G}| and pG(u) = |{({x, y}, u) ∈ G}|
and G ∈ {C,F}. This step is to ensure that none of the three sets equals L. The
algorithm is called Algorithm LeafPartition and is also shown in Fig. 2.

The rest of this section analyzes the algorithm MMTG. The lemma below ana-
lyzes the greedy partitioning algorithm.
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Lemma 7. Algorithm LeafPartition partitions the set L into three subsets A, B, C

such that score(A, B, C) cannot be further improved by moving exactly one element
from one subset to another.

Proof. After step 2 of algorithm LeafPartition, if none of the three subsets equals
L, the lemma follows. Assume that after step 2, one of the subsets, says A, equals L.
We only need to show that step 3 does not decrease score(A, B, C). When u is moved
from A to B, all triplets in {({u, x}, y) ∈ C} are moved from X1 to X0 and all triplets
in {({x, y}, u) ∈ C} are moved from X1 to X3. Similarly, all triplets in {({u, x}, y) ∈
F} are moved from Y1 to Y0 and all triplets in {({x, y}, u) ∈ F} are moved from
Y1 to Y3. Thus, score(A−{u}, {u}, ∅)− score(A, ∅, ∅) = (pC(u)− pF(u))(12− 4)−
(cC(u) − cF(u))4. Given the fact that pC(u) − pF(u) ≥ 1/2(cC(u) − cF(u)), step 3
does not decrease score(A, B, C).

Lemma 8. When Algorithm MMTG finishes the partitioning in Step 1, we have
5/12 (|C| − |F|) ≤ 5/12 (N1 − M1) + 2/3 (N2 − M2) + (N3 − M3).

Proof. Let score(A, B, C) = x(N1 − M1) + y(N2 − M2) + z(N3 − M3). When
algorithm LeafPartition terminates, for any {U, V } ⊆ {A, B, C}, moving a leaf m

from U to V cannot increase score(A, B, C). Considering moving m from A to B,
we can deduce a formula to compute the change of score with respect to C and F .
Since moving m cannot increase the score, the change of score must be nonpositive.
By summing all possible ways of moving m, we can derive the inequality (2z − 6x)
(N1−M1)+(z+2y+x)(N0−M0)+(2z−6y)(N2−M2)+(2y+x−5z)(N3−M3) ≤ 0.
By substituting N0 = |C| − N1 − N2 − N3 and M0 = |F| − M1 − M2 − M3 and
replacing x = 4, y = 7, z = 12, we have 5(|C| − |F|) ≤ 5(N1 −M1) + 8(N2 −M2) +
12(N3 − M3).

Let denote NL′ be the galled network returned by MMTG(C|L′,F|L′).

Lemma 9. If |NX(C|X)| − |NX(F|X)| ≥ t(|C|X | − |F|X |) ∀X ∈ {A, B, C} then
|NL(C)| − |NL(F)| ≥ t(N1 − M1) + 2/3 (N2 − M2) + (N3 − M3).

Proof. First, note that |NL(C|A ∪ C|B ∪ C|C)| − |NL(F|A ∪ F|B ∪ F|C)| ≥
t(|C|A| − |F|A| + |C|B| − |F|B| + |C|C| − |F|C|) = t(N1 − M1). Next, according
to the algorithm in Fig. 2, three networks NetworkA, NetworkB , and NetworkC

are generated. Every triplet t in X2 and Y2 should be consistent with two of these
three networks. In addition, all triplets in X3 and Y3 are consistent with all three
networks. So, NL, which is NetworkX for some X ∈ {A, B, C}, must have |NL(X2∪
X3)|−|NL(Y2∪Y3)| ≥ 2/3 (N2−M2)+N3−M3. Thus, in total, |NL(C)|−|NL(F)| ≥
t(N1 − M1) + 2/3 (N2 − M2) + (N3 − M3).

Given the above lemmas, the next lemma follows.

Lemma 10. |NL(C)| − |NL(F)| ≥ 5/12 (|C| − |F|).
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Proof. The lemma is proved by induction on |L| where L = Λ(C). Base case
(|L| ≤ 3): If |L| ≤ 3, we can give a network N that has |N(C) − N (F)| ≥
2/3 (|C| − |F|). Thus, |N(C)| − |N(F)| ≥ 5/12 |C|. Inductive case (|L| > 3):
Step 1 of algorithm approximate partitions L into three subsets A, B, C and
step 2 computes the three networks KA, KB, KC . By the induction assump-
tion, |KX(C|X)| − |KX(F|X)| ≥ 5/12 (|C|X | − |F|X |) for X ∈ {A, B, C}. By
Lemmas 8 and 9, |NL(C)|−|NL(F)| ≥ 5/12 (N1−M1)+2/3(N2−M2)+N3−M3 ≥
5/12(|C| − |F|).

Finally, the next two lemmas are devoted to analyzing the time complexity.

Lemma 11. Algorithm LeafPartition runs in O(|L||C|(|C| + |F|)) time.

Proof. Step 1 can be easily implemented in O(|L|) time. As score(A, B, C) is
increased by at least 1 for every iteration and score(A, B, C) ≤ 12|C|, the while
loop in step 2 executes for at most 12|C| times and step 3 is also executed for
at most 12|C| times. Each iteration of the while loop needs to compute O(|L|)
scores and each score can be computed in O(|C| + |F|) time. Thus, step 2 takes
O(|L||C|(|C| + |F|)) time. Similarly, step 3 also takes a total of O(|L||C|(|C| + |F|))
time throughout the algorithm.

Lemma 12. Algorithm MMTG(C,F) runs in O(|L|2|C|(|C| + |F|)) time.

Proof. Let t(C,F) be the running time of MMTG(C,F) and f(C,F) be the run-
ning time of LeafPartition(C,F). We have t(C,F) = f(C,F) + t(C|A,F|A) +
t(C|B,F|B)+t(C|C,F|C). By Lemma 11, f(C,F) = O(|L||C|(|C|+|F|)). By solving
the recursive equation, t(C,F) = O(|L|2|C|(|C| + |F|)).

In conclusion, we have the following theorem.

Theorem 5. Given two sets C and F of rooted triplets, a galled network N such
that |N(C)|−|N(F)| is at least 5/12 (|C|−|F|) can be constructed in O(|L|2|C|(|C|+
|F|)) time.

5. Concluding Remarks

In this paper, we have investigated the polynomial-time computability of MT and
several of its variants, and proposed some new exact and approximation algorithms.
In the future, we plan to further improve the performance of the approximation
algorithms and the time complexity of our algorithms.
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