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Abstract. A degree-constrained graph orientation of an undirected
graph G is an assignment of a direction to each edge in G such that
the outdegree of every vertex in the resulting directed graph satisfies a
specified lower and/or upper bound. Such graph orientations have been
studied for a long time and various characterizations of their existence are
known. In this paper, we consider four related optimization problems in-
troduced in [4]: For any fixed non-negative integer W , the problems Max
W -Light, Min W -Light, Max W -Heavy, and Min W -Heavy take as
input an undirected graph G and ask for an orientation of G that max-
imizes or minimizes the number of vertices with outdegree at most W
or at least W . The problems’ computational complexities vary with W .
Here, we resolve several open questions related to their polynomial-time
approximability and present a number of positive and negative results.

1 Introduction

Let G = (V,E) be an undirected (multi-)graph. An orientation of G is a function
that maps each undirected edge {u, v} in E to one of the two possible directed
edges (u, v) and (v, u). For any orientation Λ of G, define Λ(E) =

⋃
e∈E{Λ(e)}

and let Λ(G) denote the directed graph (V, Λ(E)). For any vertex u ∈ V , the
outdegree of u under Λ is defined as d+Λ(u) = |{(u, v) : (u, v) ∈ Λ(E)}|, i.e., the
number of outgoing edges from u in Λ(G). For any non-negative integer W , a
vertex u ∈ V is called W -light in Λ(G) if d+Λ (u) ≤ W , and W -heavy in Λ(G) if
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d+Λ(u) ≥ W . For any U ⊆ V , if all the vertices in U areW -light (resp., W -heavy),
we say that U is W -light (resp., W -heavy).

The optimization problemsMax W -Light, Min W -Light, Max W -Heavy,
and Min W -Heavy, where W is any fixed non-negative integer, were introduced
in [4]. In each problem, the input is an undirected (multi-)graph G = (V,E) and
the objective is to output an orientation Λ of G such that:

• Max W -Light:
∣
∣{u ∈ V : d+Λ (u) ≤ W}∣∣ is maximized

• Min W -Light:
∣
∣{u ∈ V : d+Λ (u) ≤ W}∣∣ is minimized

• Max W -Heavy:
∣
∣{u ∈ V : d+Λ (u) ≥ W}∣∣ is maximized

• Min W -Heavy:
∣
∣{u ∈ V : d+Λ (u) ≥ W}∣∣ is minimized

We write n = |V | and m = |E| for the input graph G.
The degree of u in G is denoted by d(u). We define δ = min{d(u) | u ∈ V }

and Δ = max{d(u) | u ∈ V }. For any U ⊆ V , the subgraph induced by U is
denoted by G[U ].

Observe that Max W -Light and Min (W + 1)-Heavy are supplementary
problems in the sense that an exact algorithm for one gives an exact algorithm for
the other but their polynomial-time approximability properties may differ. The
same observation holds for the pair Min W -Light and Max (W + 1)-Heavy.

The computational complexities of Max W -Light, Min W -Light, Max
W -Heavy, and Min W -Heavy were studied for different values of W in [4]. As
observed in [4], the special case of Max 0-Light is equivalent to the well-known
Maximum Independent Set problem (and the supplementary problem Min
1-Heavy is equivalent to Minimum Vertex Cover). Thus, allowing the value
of W to vary yields a natural generalization of Maximum Independent Set
and Minimum Vertex Cover. In many cases, however, the (in)tractability and
the (in)approximability remained unknown. In this paper, we establish several
new results on the polynomial-time approximability of these problems.

New Results: Below is a summary of previous results from [4] and the new
results presented in this paper (see Table 1 for a summary). Due to space limi-
tations, many technical details will be deferred to the full version of the paper.

– Max W -Light: It is known that Max 0-Light cannot be approximated
within a ratio of n1−ε for any positive constant ε in polynomial time unless
P = NP [4,31]. Theorem 6 of Sect. 4 proves that for every fixed W ≥ 1,
Max W -Light cannot be approximated within (n/W )1−ε in polynomial
time unless P = NP . On the positive side, Theorem 7 of Sect. 4 provides a
polynomial-time n/(2W + 1)-approximation algorithm for Max W -Light.

– Min W -Heavy: Min 1-Heavy cannot be approximated within 1.3606 in
polynomial time unless P = NP [4,9]. Theorem 5 of Sect. 4 extends this
inapproximability result to hold for Min W -Heavy for every fixed W ≥ 2.
We also show how to approximate Min W -Heavy within a ratio of log(Δ−
W + 1) in polynomial time for every fixed W ≥ 2 in Theorem 2 of Sect. 3.
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Table 1. Summary of the results from [4] and the new results in this paper

W Max W -Light Min (W + 1)-Heavy
= 0 Identical to Identical to

Maximum Independent Set [4] Minimum Vertex Cover [4]
≥ 1 Solvable in O(n) time for trees [4] Solvable in O(n) time for trees [4]

(n/(2W + 1))-approx. (Theorem 7) log(Δ−W )-approx. (Theorem 2)
(n/W )1−ε-inapprox. (Theorem 6) 1.3606-inapprox. (Theorem 5)

W Min W -Light Max (W + 1)-Heavy

= 0 Solvable in O(m3/2) time [4] Solvable in O(m3/2) time [4]
≥ 0 Solvable in O(n) time for trees [4] Solvable in O(n) time for trees [4]

Solvable in O(n2) time Solvable in O(n2) time
for outerplanar graphs [4] for outerplanar graphs [4]

≥ 1 (W + 1)-approx. [4] O(n2)-time 2-approx.
log(W + 1)-approx. (Theorem 1) for planar graphs [4]

O(m)-time (W + 2)-approx. [4]
≥ 2 NP-hard for planar graphs [4] NP-hard for planar graphs [4]
large (log(W + 1)−O(log log(W + 1))) W 1−ε-inapprox. (Theorem 3)

-inapprox. (Theorem 4)

– Min W -Light: A polynomial-time (W + 1)-approximation algorithm was
given in [4]. Theorem 1 of Sect. 3 improves the approximation ratio to
log(W + 1) for any W ≥ 1. Moreover, Theorem 4 in Sect. 4 shows that
for sufficiently large W , Min W -Light is NP-hard to approximate within
log(W +1)−O(log log(W +1)), implying that our log(W +1)-approximation
is almost tight.

– Max W -Heavy: It was shown in [4] that Max 1-Heavy and Min 0-Light
are in P , but Max W -Heavy and Min (W − 1)-Light are NP-hard for
every fixed W ≥ 3. An open problem from [4] was to determine the com-
putational complexity of Max 2-Heavy and Min 1-Light. Now, consider
two special cases: (i) Δ ≤ 3 and (ii) δ ≥ 4. Corollary 3 of Sect. 5 and Propo-
sition 5 of Sect. 2 demonstrate that Max 2-Heavy and Min 1-Light can
be solved in polynomial time for (i) and (ii), respectively. Also, Theorem 3
in Sect. 4 proves that for sufficiently large W , Max W -Heavy is NP-hard
to approximate within W 1−ε for any ε > 0. The best previously known
polynomial-time approximation ratio was W + 1 [4].

Motivation: Graph orientations that optimize certain objective functions in-
volving the resulting directed graph or that satisfy some special property such as
acyclicity [26] or k-edge connectivity [8,21,24] have many applications to graph
theory, combinatorial optimization, scheduling (load balancing), resource alloca-
tion, and efficient data structures. For example, an orientation that minimizes
the maximum outdegree [2,7,10,29] can be used to support fast vertex adjacency
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queries in a sparse graph by storing each edge in exactly one of its two inci-
dent vertices’ adjacency lists while ensuring that all adjacency lists are short [7].
There are many optimization criteria for graph orientation other than these.
See [3] or chapter 61 in [27] for more details and additional references.

On the other hand, degree-constrained graph orientations [12,13,15,19] arise
when a lower degree bound W l(v) and an upper degree bound Wu(v) for each
vertex v in the graph are specified, and the outdegree of v in any valid graph
orientation is required to lie in the interval W l(v)..Wu(v). Obviously, a graph
does not always have such an orientation, and in this case, one might want to
compute an orientation that best fits the outdegree constraints according to some
well-defined criteria [3,4]. In case W l(v) = 0 and Wu(v) = W for every vertex v
in the input graph, where W is a non-negative integer, and the objective is to
maximize (resp., minimize) the number of vertices that satisfy (resp., violate)
the outdegree constraints, then we obtain Max W -Light (resp., Min (W +1)-
Heavy). Similarly, if W l(v) = W and Wu(v) = ∞ for every vertex v in the
input graph, then we obtain Max W -Heavy and Min (W − 1)-Light.

2 Preliminaries

For a graph G, we denote its vertex set and edge set by V (G) and E(G), re-
spectively. For any fixed integer W ≥ 0, an orientation of a graph is called a
W -orientation if and only if the maximum outdegree is at most W . If a W -
orientation exists, we say that the graph is W -orientable. For any S ⊆ V , we
write E(S) to denote the subset of edges whose both endpoints belong to S.
Also, for any two disjoint subsets S, T ⊆ V , we write E(S, T ) to denote the sub-
set of all edges such that one endpoint belongs to S and the other T . The ratio
|E(S)|/|S| is called the density of S. The maximum density DG of a graph G is

defined by DG = maxS⊆V

⌈
|E(S)|
|S|

⌉
1. We denote a subgraph of G whose vertex

set and edge set are respectively V (G) \ S and E(V (G) \ S) by G \ S. Finally,
an orientation Λ of an undirected graph G is called an Eulerian orientation if
d+Λ(v) = d(v)− d+Λ(v), i.e., if the outdegree equals the indegree for every vertex.

It is known [12] that finding the maximum density of any graph is equivalent
to finding the smallest integer W such that the graph is W -orientable:

Proposition 1 ([12]). Any graph G is W -orientable if and only if DG′ ≤ W
for all induced subgraphs G′ in G.

The following immediate consequence plays an important role in the paper. Note
that the orientation referred to in Proposition 2 is an Eulerian orientation.

Proposition 2. The complete graph K2W+1 has an orientation in which the
indegree and outdegree of every vertex are equal to W .

1 The ceiling function gives the maximum degree of the vertices in the subgraph in-
duced by S, where the maximum degree is an integer here.
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Proposition 3 (p. 91 of [27]). Given a graph G with all degrees even, an
Eulerian orientation of G can be found in O(m) time.

The following proposition extends the notion of density DG for our problems:

Proposition 4. Consider a graph G and an orientation Λ of G, and assume
that m′ edges in E(U, V (G) \U) for a subset U of vertices are oriented outward
from U to V (G) \ U in Λ. Then, the average outdegree of the vertices in U is
(|E(U)| + m′)/|U |. As a result, there exists a vertex v ∈ U such that d+Λ (v) ≥
�(|E(U)|+m′)/|U |�.
For restricted instances, Max (W +1)-Heavy and Min W -Light can be solved
in polynomial time. The fundamental idea of the algorithm is (i) first insert
matching edges between odd degree vertices, and then (ii) orient the edges along
with an Eulerian tour.

Proposition 5. If the minimum degree δ of the input graph G satisfies W +1 ≤
	δ/2
, an O(m)-time algorithm finds an optimal orientation for Max (W + 1)-
Heavy and Min W -Light, under which no vertex is W -light.

Let δ∗ = maxΛ minv d
+
Λ(v). Since the algorithm in Proposition 5 outputs an

orientation under which the minimum outdegree is at least 	δ/2
, it always
holds that δ∗ ≥ 	δ/2
. A known polynomial-time algorithm from [1] named
Exact-1-MaxMinO outputs an orientation under which the minimum outdegree
is δ∗, which gives the following corollary:

Corollary 1. The algorithm Exact-1-MaxMinO outputs an optimal orientation
for Max (W + 1)-Heavy and Min W -Light when W + 1 ≤ 	δ/2
.
An analogous discussion gives the following proposition and corollary, utilizing
the polynomial-time algorithm Reverse from [5]:

Proposition 6. If Δ satisfies W ≥ �Δ/2�, then Min (W+1)-Heavy and Max
W -Light can be solved in O(m) time.

Corollary 2. The algorithm Reverse outputs an optimal orientation for Min
(W + 1)-Heavy and Max W -Light when W ≥ �Δ/2�.

3 Greedy Algorithms for Min W -Light and Min
(W + 1)-Heavy

In this section, for general W , we present greedy algorithms for Min W -Light
and for Min (W + 1)-Heavy, which use the same framework, but different
criterion functions are adopted.

Here we explain the main idea of the greedy algorithm for Min W -Light.
Our algorithm sequentially chooses vertices to be removed as violating vertices
(W -light vertices). We refer by S the temporary vertices to be removed in Min
W -Light, that is, S starts from ∅ and the size of S increases one-by-one by
a greedy manner until V (G) \ S becomes (W + 1)-heavy. The criterion of the
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greedy algorithm is defined by the following problem and its polynomial time
solvability:

Problem Attainment of (W +1)-Heavy Orientation (P1(G,W, S))

max
∑

v∈V \S
min{W + 1, d+Λ(v)}

subject to Λ ∈ A(G) ,

where A(G) is the set of all orientations on G.

Since P1(G,W, S) can be solved via the maximum flow problem, we obtain
the following lemma.

Lemma 1. Attainment of (W +1)-Heavy Orientation (P1(G,W, S)) can
be solved in O(m1.5 min{m0.5, logm logW}) time.

Proof. The problem P1(G,W, S) can be reduced to the following maximum flow
problem which can be solved in O(m1.5 min{m0.5, logm logW}) time [14,18,22]:
For graph G, we construct network N (G,W, S), where the set of vertices is
{s, t} ∪ E(G) ∪ V (G) and the set of arcs is {(s, e) | e ∈ E} ∪ {(e, u), (e, v) | e =
{u, v} ∈ E(G)} ∪ {(u, t) | u ∈ V (G)}. The capacities of the arcs are defined by

cap((s, e)) = 1 for e ∈ E(G),
cap((e, u)) = 1 for u ∈ e ∈ E(G), and

cap((u, t)) =

{
0

W + 1

for u ∈ S,
for u ∈ V (G) \ S .

We can see that the objective value of P1(G,W, S) corresponds to the flow value
of the network. In fact, flowwith size one from s to e(= {u, v}) goes through either
u or v (exactly one of u and v) by the flow integrality. This is interpreted as follows:
e = {u, v} is oriented as (u, v) if the flow via e goes through u, and (v, u) otherwise;
the value of flow via u is considered theminimum ofW+1 and the outdegree of u of
the corresponding orientation. Thus, the optimal value of P1(G,W, S) is obtained
by solving the maximum flow problem on N (G,W, S). �
By the optimality of the maximum flow, there is a simple characterization of an
optimal orientation.

Lemma 2. Λ is an optimal orientation of P1(G,W, S) if and only if there is
not a directed path on Λ of G \ S from any (W + 2)-heavy vertex in V \ S or a
vertex in S to W -light vertex in V \ S.
As mentioned above, we design a greedy algorithm that uses the optimal value
of P1(G,W, S) as a criterion. Let g1(S) be the optimal value of P1(G,W, S) plus
|S|(W +1). It is easy to see that g1(S) = g1(V ) if G \S is (W +1)-heavy. Thus,
by using this g1(S), Min W -Light can be formulated as minS⊆V {|S| | g1(S) =
g1(V )}. We can show the following lemma.
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Lemma 3. g1(S) is a non-decreasing submodular function, that is, it satisfies
that (non-decreasingness) g1(S ∪ {i})− g1(S) ≥ 0 for any i ∈ V \ S, and (sub-
modularity) g1(S) + g1(T ) ≥ g1(S ∩ T ) + g1(S ∪ T ) for any S, T ⊆ V .

Proof. For two disjoint subsets S, S′ ⊆ V of vertices, let us denote

α(S, S′) = min{
∑

v∈S′
min{W + 1, d+Λ(v)} | Λ ∈ OptO(P1(G,W, S))} ,

where OptO(P1(G,W, S)) is the set of all optimal orientations of P1(G,W, S).
To prove this lemma, we first show that

g1(S ∪ S′)− g1(S) = |S′|(W + 1)− α(S, S′) (1)

holds for any disjoint S, S′ ⊆ V . Let ΛS,S′ be an orientation that achieves
α(S, S′). We can see that ΛS,S′ is also an optimal orientation of P1(G,W, S∪S′).
In fact, by Lemma 2 and the optimality of ΛS,S′ for P1(G,W, S), there is
no directed path from (W + 2)-heavy vertex in V \ S or a vertex in S to
W -light vertex in ΛS,S′. Also, there exists no directed path from a vertex in
S′ to a W -light vertex in V \ (S ∪ S′), otherwise it contradicts that ΛS,S′

minimizes
∑

v∈S′ min{W + 1, d+Λ(v)}. These imply the optimality of ΛS,S′ for
P1(G,W, S ∪ S′). Thus, we have

g1(S) = |S|(W + 1) +
∑

v∈V \S
min{W + 1, d+ΛS,S′ (v)}

= (|S ∪ S′| − |S′|)(W + 1) +
∑

v∈V \(S∪S′)

min{W + 1, d+ΛS,S′ (v)}

+
∑

v∈S′
min{W + 1, d+ΛS,S′ (v)}

= g1(S ∪ S′)− |S′|(W + 1) +
∑

v∈S′
min{W + 1, d+ΛS,S′ (v)} ,

which is equivalent to (1). Note that the second equality in the above is based
on the fact that S and S′ are disjoint. By (1), g1(S ∪ {i})− g1(S) = (W + 1)−
α(S, {i}) ≥ 0 holds for any i ∈ V \S, which implies the non-decreasing property
of g1.

We are ready to prove the submodularity of g1. An equivalent condition of
the submodularity of g1 is that

g1(S ∪ {i})− g1(S) ≥ g1(S ∪ {i, j})− g1(S ∪ {j}) (2)

for any S ⊆ V and any i, j ∈ V \ S. By (1), we have

g1(S ∪ {i})− g1(S) = (W + 1)− α(S, {i}),
g1(S ∪ {j})− g1(S) = (W + 1)− α(S, {j}), and

g1(S ∪ {i, j})− g1(S) = 2(W + 1)− α(S, {i, j}) .

Here, it is easy to see that α(S, {i})+α(S, {j}) ≤ α(S, {i, j}) holds. This implies
(2), the submodularity of g1. �
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It is known that optimization problems that form minS⊆V {|S| | g(S) = g(V )}
can be approximated within a log(maxi∈V {g({i})−g(∅)}) factor by the following
greedy algorithm, if g is a non-decreasing submodular function [30].

1. Set S = ∅.
2. Find an i∈V \ S that maximizes g(S ∪ {i})− g(S), and update S :=S ∪ {i}.
3. If g(S) = g(V ), then output S and halt. Otherwise, goto 2.

In our case, g1 is a non-decreasing submodular function from Lemma 3, so
it can be approximated within a log(maxi∈V {g1({i})− g1({∅})}) ≤ log(W + 1)
factor by the greedy algorithm. In our case, this algorithm can be executed by n
iterations of Step 2. Step 2 is done in O(m1.5 min{m0.5, logm logW}) +O(mn)
time, where O(m1.5{m0.5, logm logW}) time is for computing the maximum
flow for g1(∅) based on Lemma 1, and O(mn) is n-times finding an augmenting
path to compute g1(S ∪ {i}) from g1(S). We obtain the following theorem:

Theorem 1. Min W -Light can be approximated within a factor of log(W +1)
in O((mn+m1.5 min{m0.5, logm logW})n) time.

As forMin (W+1)-Heavy, we can obtain the similar theorem as follows, though
we need to be a little more careful because we use the minimum cost flow for
the proof, and it is not as simple as the maximum flow.

Theorem 2. Min (W + 1)-Heavy can be approximated within a factor of
log(Δ−W ) in polynomial time.

4 (In)approximability of the Problems

In this section, we give several results on the (in)approximability of the four prob-
lems, Max W -Heavy, Min W -Light, Min W -Heavy, and Max W -Light in
this order.

In [4], the NP-hardness of Max W -Heavy is shown for W ≥ 3, however, no
inapproximability results are known. The next theorem gives an inapproxima-
bility of Max W -Heavy for a sufficiently large W :

Theorem 3. For W = Ω(n1/3), Max W -Heavy cannot be approximated within
a factor of W 1−ε in polynomial time for any constant ε > 0 unless P = NP.

It should be noted that the proof of this theorem is based on the hardness of
Max Independent Set. An important condition here is W ≥ Δ of an instance
of Max Independent Set. Since Max Independent Set is NP-hard when
Δ ≥ 3, the proof implies that Max W -Heavy is NP-hard also when W ≥ 3,
i.e., we cannot show the hardness of Max W -Heavy for the case W = 2.

Next we give an inapproximability of Min W -Light here:

Theorem 4. Min 2-Light and Min 3-Light cannot be approximated within
a constant factor 100/99 and 53/52, respectively, in polynomial time unless
P = NP. Furthermore, for sufficiently large W , Min W -Light cannot be ap-
proximated within a factor of log(W + 1) − O(log logW ) in polynomial time
unless P = NP.
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Since Min 1-Heavy is equivalent to Min Vertex Cover [4], it can be approx-
imated within a ratio of 2− Θ(1/

√
logn) [16]. Also, in this paper, we designed

O(log(Δ−W ))-approximation algorithm for Min W -Heavy in Theorem 2. On
the other hand, the following inapproximability of Min W -Heavy can be also
shown.

Theorem 5. For every fixed W ≥ 1, Min W -Heavy cannot be approximated
within a ratio of 1.3606 in polynomial time unless P = NP.

Proof. Since Min 1-Heavy is equivalent to Minimum Vertex Cover[4], Min
1-Heavy cannot be approximated within a ratio of 1.3606 in polynomial time un-
less P = NP [9]. The hardness of approximating Min W -Heavy for every fixed
W ≥ 2 is shown by a gap-reserving reduction from Minimum Vertex Cover.
Let G = (V (G), E(G)) be an input graph of Minimum Vertex Cover with
n vertices. Then, we construct a graph H = (V (H), E(H)) of Min W -Heavy
from G. Let OPT (G) and OPT ′(H) denote the values of optimal solutions for
G of Minimum Vertex Cover and for H of Min W -Heavy, respectively.
Let V (G) = {v1, v2, · · · , vn} of n vertices in G. The constructed graph H has
n subgraphs H1 through Hn. Each subgraph Hi consists of one vertex ui,0 and
a complete graph Ki

2W−1 of 2W − 1 vertices, ui,1 through ui,2W−1. The vertex
ui,0 is connected to W − 1 vertices ui,1 through ui,W−1. That is, the number of
edges in the subgraph Hi is (2W − 1)(2W − 2)/2 + (W − 1) = 2W (W − 1). If
{vi, vj} in G of Minimum Vertex Cover, then Hi and Hj are connected by
an edge {ui,0, uj,0}. This reduction can be done in polynomial time. In the fol-
lowing we show that this reduction can completely preserve the approximation
gap of α = 1.3606 in Minimum Vertex Cover, i.e., OPT (G) ≤ k if and only
if OPT ′(H) ≤ k holds.

The following simple observation plays a key role in this proof: Now suppose
that {vi, vj} ∈ E(G). Then, consider the subgraph G[V (Hi)∪V (Hj)] induced by
V (Hi) and V (Hj) connected by the edge {ui,0, uj,0}. One can see that G[V (Hi)∪
V (Hj)] contains |V (Hi)|+ |V (Hj)| = 4W vertices and |E(Hi)|+ |E(Hj)|+ 1 =
4W (W − 1) + 1 edges; the density of G[V (Hi) ∪ V (Hj)] is larger than W − 1.
This means that the maximum density is at least W so that at least one vertex
in G[V (Hi) ∪ V (Hj)] must be W -heavy.

(Only-if part) Consider a vertex cover S ⊆ V (G) with size at most k of G.
Then we can give the following orientation of H : For the internal edges ofKi

2W−1

in the ith subgraph Hi for every i = 1, 2, · · · , n, we give an arbitrary orientation
in which every vertex has outdegree W − 1 by Proposition 2. The number of
edges between ui,0 and the complete graph Ki

2W−1 in Hi is W −1, and those are
oriented from ui,0 to W − 1 vertices in Ki

2W−1. At this moment, the outdegree
of ui,0 is exactly W −1. For an edge {ui,0, uj,0} between Hi and Hj where vi ∈ S
and vj ∈ V \ S, we orient it from ui,0 to uj,0. If both vertices vi and vj are in
S, then the edge {ui,0, uj,0} is oriented arbitrarily. Since at least one vertex in
{ui,0, uj,0} between Hi and Hj is in S, the outdegree of a vertex in V (G) \ S is
W − 1. The number of W -heavy vertices is at most k.

(If part) Consider an orientation Λ such that the number of W -heavy vertices
in H is at most k. As observed above, at least one vertex in the subgraph induced
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by two subgraphs Hi and Hj corresponding to two vertices in an edge {vi, vj}
in G is W -heavy. If the W -heavy vertex is in Hi, then we select the vertex vi
into the subset S of vertices. Otherwise, the vertex vj is selected into S. Then,
at least one endpoint of every edge in E(G) must be in S. Thus, S is a vertex
cover of G and |S| ≤ k holds by the assumption. �

Since Max 0-Light is equivalent to Max Independent Set [4], it cannot be
approximated within a factor of n1−ε [31] while it can be approximated within a
factor of n(log logn)2/(logn)3 [11]. In the following we give the inapproximability
and the approximability of Max W -Light for W ≥ 1:

Theorem 6. For every fixed W ≥ 1, Max W -Light cannot be approximated
within a factor of (n/W )1−ε in polynomial time unless P = NP.

The following algorithm runs in linear time. Although it is quite simple, its
approximation ratio is almost tight due to the inapproximability ratio of
Ω((n/W )1−ε) above.

1. Pick any min{2W + 1, n} vertices in the input G. Let the set of the chosen
vertices be U .

2. Apply the algorithm in Prop. 6 to G[U ].
3. Orient the edges in E \ E(U) connecting to any vertex in U towards U .
4. Orient the remaining edges arbitrarily.

Theorem 7. There is a linear time n/(2W + 1)-approximation algorithm for
Max W -light.

5 Degree-Bounded Graphs

In this section, the obtained results for input graphs with bounded degrees are
briefly summarized.

First we can obtain a polynomial time 2-approximation algorithm by a slight
modification to the one in Prop. 5; the main idea of the modification is to choose
appropriate pairs of vertices having odd degrees, when inserting matching edges.
Recall that if Δ = 2W , then the problem Max W -Light can be solved in
polynomial time by Corollary 2.

Theorem 8. If Δ = 2W + 1, there is a polynomial time 2-approximation algo-
rithm for Max W -Light.

Next theorem shows the
⌊
Δ
2

⌋
-approximability for Max 2-Heavy. The algorithm

roughly works as follows: (i) first it obtains a line graph L(G) of the input graph
G, (ii) finds a maximum matching in L(G), then (iii) converts the obtained
matching to an orientation of G. Here an important property is that the size of
the maximum matching in L(G) guarantees the number of 2-heavy vertices in
the resulted directed graph.



34 Y. Asahiro et al.

Theorem 9. There is a polynomial time 	Δ/2
-approximation algorithm for
Max 2-Heavy.

Based on this theorem, the following corollary holds, which shows one side of the
complexity of Max 2-Heavy and Min 1-Light; it is unknown whether Max
2-Heavy and Min 1-Light are NP-hard or not for general.

Corollary 3. Max 2-Heavy and Min 1-Light can be solved in polynomial
time when Δ ≤ 3.

6 Concluding Remarks

In this paper, we have derived several new results on the complexity of Max
W -Light, Min W -Light, Max W -Heavy, and Min W -Heavy. As for one
technical aspect, we remark that the proof of the submodularity in Sect. 3 might
be simplified using matroid theory. We would also like to note here that the 2-
approximation algorithm for Feedback Vertex Set [6] gives a fundamental
idea for a polynomial-time 2-approximation algorithm for Min 2-Heavy.

An interesting open question is whether Max 2-Heavy (or Min 1-Light)
is NP-hard for general graphs. Furthermore, there are still many gaps between
the known polynomial-time approximability and inapproximability bounds for
the problems; investigating stricter thresholds is a further research topic.

The problems were defined on unweighted graphs. A natural generalization
is to let the vertices be weighted and try to minimize (or maximize) the total
weights of heavy (or light) vertices. Under this generalization, designing algo-
rithms becomes harder in general, but some of the presented approximation
algorithms (e.g., the ones in Sect. 3) can easily be adjusted to the weighted ver-
sion with the same approximation guarantees. Alternatively, the problems can
be generalized by allowing the edges to be weighted, in which the outdegree of
a vertex is defined by the total weights of outgoing edges.
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