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Abstract. The Minimum Maximum Outdegree Problem (MMO) is to
assign a direction to every edge in an input undirected, edge-weighted
graph so that the maximum weighted outdegree taken over all vertices
becomes as small as possible. In this paper, we introduce a new variant
of MMO called the p-Split Minimum Maximum Outdegree Problem (p-
Split-MMO) in which one is allowed to perform a sequence of p split
operations on the vertices before orienting the edges, for some specified
non-negative integer p, and study its computational complexity.
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1 Introduction

An orientation of an undirected graph is an assignment of a direction to each of
its edges. The computational complexity of constructing graph orientations that
optimize various criteria has been studied, e.g., in [1–5,7,9,12,14], and positive
as well as negative results are known for many variants of these problems.

For example, the Minimum Maximum Outdegree Problem (MMO) [4–7,14]
takes as input an undirected, edge-weighted graph G = (V,E,w), where V ,
E, and w denote the set of vertices of G, the set of edges of G, and an edge-
weight function w : E → Z

+, respectively, and asks for an orientation of G
that minimizes the resulting maximum weighted outdegree taken over all ver-
tices in the oriented graph. In general, MMO is strongly NP-hard and cannot be
approximated within a ratio of 3/2 unless P = NP [4]. However, in the special
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case where all edges have weight 1, MMO can be solved exactly in polynomial
time [14]. MMO has applications to load balancing, resource allocation, and data
structures for fast vertex adjacency queries in sparse graphs [6,7] based on the
technique of placing each edge in the adjacency list of exactly one of its two inci-
dent vertices. E.g., if G is a planar graph then G admits an orientation in which
every vertex has outdegree at most 3 and such an orientation can be found in
linear time [7], which means that for a planar graph, any adjacency query can be
answered in O(1) time after linear-time preprocessing. As an additional example
of a graph orientation problem, finding an orientation that maximizes the num-
ber of vertices with outdegree 0 is the Maximum Independent Set Problem [2],
which cannot be approximated within a ratio of nε for any constant 0 ≤ ε < 1 in
polynomial time unless P = NP [15]. Similarly, finding an orientation that min-
imizes the number of vertices with outdegree at least 1 is the Minimum Vertex
Cover Problem and minimizing the number of vertices with outdegree at least 2
is the problem of finding a smallest subset of the vertices in G whose removal
leaves a pseudoforest [2], both of which admit polynomial-time 2-approximation
algorithms [10].

In this paper, we introduce a new variant of MMO called the p-Split Mini-
mum Maximum Outdegree Problem (p-Split-MMO), where p is a specified non-
negative integer, and study its computational complexity. Here, one is allowed
to perform a sequence of p split operations on the vertices before orienting the
edges. When thinking of MMO as a load balancing problem, the split operation
can be interpreted as a way to alleviate the burden on the existing machines by
adding an extra machine.

The paper is organized as follows. Section 2 gives the formal definition of
p-Split-MMO. Section 3 presents an O((n + p)p · poly(n))-time algorithm for the
unweighted case of the problem, where n is the number of vertices in the input
graph, while Sect. 4 proves that if p is unbounded then the problem becomes
NP-hard even in the unweighted case. On the other hand, for the edge-weighted
case, Sect. 5 shows that p-Split MMO with weighted edges is weakly NP-hard
even if restricted to p = 1. Finally, Sect. 6 proves that the most general case
of the problem, i.e., with weighted edges as well as unbounded p, is strongly
NP-hard. See Table 1 for a summary of the new results.

Table 1. Overview of the computational complexity of p-Split MMO. Note that in
the edge-weighted case, the edge weights are included in the input so it is possible to
further classify the NP-hardness results as either weakly NP-hard or strongly NP-hard.

Unweighted graphs Edge-weighted graphs

Constant p O((n+ p)p · poly(n)) time
(Sect. 3, Theorem 1)

Weakly NP-hard
(Sect. 5, Theorem 3)

Unbounded p NP-hard
(Sect. 4, Theorem 2)

Strongly NP-hard
(Sect. 6, Theorem 4)
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2 Definitions

Let G = (V,E,w) be an undirected, edge-weighted graph with vertex set V , edge
set E, and edge weights defined by the function w : E → Z

+. An orientation Λ
of G is an assignment of a direction to every edge {u, v} ∈ E, i.e., Λ({u, v}) is
either (u, v) or (v, u). For any orientation Λ of G, the weighted outdegree of a
vertex u is

d+Λ(u) =
∑

{u,v}∈E:
Λ({u,v})=(u,v)

w({u, v})

and the cost of Λ is
c(Λ) = max

u∈V
{d+Λ(u)}.

Let MMO be the following optimization problem, previously studied in [4–7,14].

The Minimum Maximum Outdegree Problem (MMO):
Given an undirected, edge-weighted graph G = (V,E,w), where V , E, and w
denote the set of vertices of G, the set of edges of G, and an edge-weight
function w : E → Z

+, output an orientation Λ of G with minimum cost.

Next, for any v ∈ V , the set of vertices in V that are neighbors of v is denoted
by Γ [v] and the set of edges incident to v is denoted by E[v]. A split operation
on a vertex vi in G is an operation that transforms: (i) the vertex set of G to
(V \ vi) ∪ {vi,1, vi,2}, where vi,1 and vi,2 are two new vertices; and (ii) the edge
set of G to (E \E[vi])∪{{vi,1, s} : s ∈ S}∪{{vi,2, s

′} : s′ ∈ Γ [vi] \S} for some
subset S ⊆ Γ [vi]. For any non-negative integer p, a p-split on G is a sequence
of p split operations successively applied to G. Note that in a p-split, a new
vertex resulting from a split operation may in turn be the target of a later split
operation.

The problem that we study in this paper generalizes MMO above and is
defined as follows for any non-negative integer p.

The p-Split Minimum Maximum Outdegree Problem (p-Split-MMO):
Given an undirected, edge-weighted graph G = (V,E,w), where V , E, and w
denote the set of vertices of G, the set of edges of G, and an edge-weight
function w : E → Z

+, output a graph G′ and an orientation Λ′ of G′ such
that: (i) G′ is obtained by a p-split on G; (ii) Λ′ has minimum cost among
all orientations of all graphs obtainable by a p-split on G.

See Fig. 1 for an example. Throughout the paper, we denote the number of
vertices and edges in the input graph G by n and m, respectively. Any orientation
of a graph G′, where G′ can be obtained by applying a p-split to G, will be
referred to as a p-split orientation of G. The decision version of p-Split-MMO,
denoted by p-Split-MMO(W ), asks whether or not the input graph G has a
p-split orientation Λ′ with c(Λ′) ≤ W for a specified integer W .
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x y

Fig. 1. Consider the instance of 1-Split-MMO on the left (here, all edge weights
are 1). If the split operation is applied to the vertex x as shown in the middle figure, the
resulting instance of MMO can be oriented with maximum outdegree equal to 1, so this
is an optimal solution. Observe that if the vertex y had been split instead, the minimum
maximum outdegree would have been 2. This shows that greedily applying the split
operations to the highest degree nodes will not necessarily yield an optimal solution.

3 An Algorithm for Unweighted Graphs

This section presents an algorithm for p-Split-MMO on graphs with unweighted
edges (equivalently, where all edge weights are equal to 1). Its time complexity
is O((n + p)p · poly(n)), which is polynomial when p = O(1).

Our basic strategy is to transform p-Split-MMO to the maximum flow prob-
lem on directed networks with edge capacities: (i) We first select an integer W
as an upper bound on the cost of a p-split orientation. (ii) Next, we construct a
flow network N based on the input graph G and the integer W . (iii) By comput-
ing a maximum network flow in N , we solve p-Split-MMO(W ), i.e., determine
whether p-Split-MMO(W ) admits a feasible solution or not. (iv) By refining W
according to a binary search while repeating steps (ii) and (iii), we find the min-
imum possible value of W and retrieve an optimal p-split orientation of G from
the corresponding flow network.

We now describe the details. (Refer to Fig. 2 for an example of the con-
struction.) Let G = (V,E) be the input graph and p any non-negative inte-
ger. For any positive integer W and multisubset S of V (i.e., a subset of V in
which repetitions are allowed) of cardinality p, define the following flow network
NW,S = (VN , EN ):

VN = V ∪ E ∪ {s, t}
EN =

⋃

e={u,v}∈E

{(s, e), (e, u), (e, v)} ∪
⋃

v∈V

{(v, t)}

where s and t are newly created vertices. Note that |VN | = n + m + 2 and
|EN | = n + 3m. The capacity cap(u, v) of each edge (u, v) ∈ EN is set to:

• cap(s, e) = 1 for every e ∈ E;
• cap(e, u) = cap(e, v) = 1 for every e = {u, v} ∈ E; and
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Fig. 2. (a) An input graph G and (b) the flow network NW,S constructed from G when
p = 3, W = 2, and S = {v2, v5, v5}. For clarity, only edge capacities in NW,S greater
than 1 are displayed.

• cap(v, t) = W + W · occ(v) for every v ∈ V , where occ(v) is defined as the
number of occurrences of v in S.

Consider any maximum flow in NW,S . Since the edge capacities are integers,
we can assume that the maximum flow is integral by the integrality theorem
(see, e.g., [8]). Then we have:

Lemma 1. The maximum directed flow from vertex s to vertex t in NW,S equals
|E| if and only if G has a p-split orientation with cost at most W obtained after
doing occ(v) split operations on each v ∈ V .

Proof. (⇒) Let F be a maximum directed flow from s to t with integer values
and assume it is equal to |E|. Since there are |E| units of flows leaving s in F ,
exactly one edge among (e, u) and (e, v) for every e = {u, v} ∈ E has one unit
of flow in NW,S . We construct a p-split orientation Λ of G by first orienting
each edge e = {u, v} ∈ E as (u, v) if (e, u) is using one unit of flow in F and
(e, v) is using zero units of flow in F , or as (v, u) otherwise. At this point, each
vertex v ∈ V has outdegree at most W + W · occ(v) because there are at most
this many units of flow entering v in NW,S . Next, for each v ∈ V , do occ(v)
split operations on v and distribute its outgoing edges evenly among each v and
its resulting new vertices so that every vertex has outdegree at most W . Since∑

v∈V occ(v) = p, the resulting Λ is a p-split orientation of G.

(⇐) Suppose there is a p-split orientation of G with cost at most W obtained
by doing occ(v) split operations on each v ∈ V . Then we can construct a flow
in NW,S that has |E| units of flow by using: (i) all |E| edges of the form (s, e);
(ii) |E| edges of the form (e, u) where e = {u, v} ∈ E (either (e, u) or (e, v)
depending on if {u, v} was oriented as (u, v) or (v, u)); and (iii) at most |V | edges
of the form (v, t). Observe that for (iii), each v ∈ V has at most W + W · occ(v)
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units of flow entering it in NW,S , which is within the capacity limit of its outgoing
edge (v, t), so in total, we have |E| units of flow from s to t. 	

Lemma 2. p-Split-MMO can be solved in O((n + p)p · n2 · T (|VN |, |EN |) · log n)
time, where T (|VN |, |EN |) is the running time for solving the maximum network
flow problem on a directed graph with vertex set VN and edge set EN .

Proof. For any candidate value of W , we can identify a p-split orientation of G
with cost at most W or determine that none exists, by evaluating every multisub-
set S of V of cardinality p, constructing NW,S , computing a maximum directed
flow in NW,S , and applying Lemma 1. The number of multisubsets is at most(
n−1+p

p

)
= O((n + p)p), constructing each NW,S takes O(n + m) = O(n2) time,

and each maximum network flow instance is solved in T (|VN |, |EN |) time.
Since the graph G is unweighted, W is upper-bounded by the maximum

degree of a vertex. Therefore, applying binary search to obtain the minimum
possible value of W (i.e., the smallest W for which the maximum flow is still |E|
for some multisubset S of V ) increases the running time by a factor of O(log n).
The total time complexity is O((n + p)p · n2 · T (|VN |, |EN |) · log n). 	


Since |VN | = O(m) and |EN | = O(m), plugging in T (|VN |, |EN |) = O(m2)
(see [13]) yields:

Theorem 1. p-Split-MMO for unweighted graphs can be solved in O((n + p)p ·
n2m2 log n) time.

4 Unweighted Graphs, Unbounded p

We now prove the NP-hardness of p-Split-MMO for unbounded p, even when
restricted to unweighted graphs. Recall that p-Split-MMO(W ) is the decision
version of p-Split-MMO which asks if G has a p-split orientation of cost at
most W . The main result of this section is:

Theorem 2. p-Split-MMO(3) for unweighted graphs and unbounded p is NP-
complete.

Proof. p-Split-MMO(3) is in NP because a nondeterministic algorithm can guess
a p-split of G and an orientation of the resulting graph in polynomial time and
check if this orientation has cost at most 3.

To prove the NP-hardness, we give a polynomial-time reduction from the
decision version of the Minimum Vertex Cover Problem, VC(k), defined as: Given
an undirected graph G = (V,E) and a positive integer k, determine if there is
a subset V ′ ⊆ V with |V ′| ≤ k such that for each {u, v} ∈ E, at least one
of u and v belongs to V ′. It is known that VC(k) remains NP-complete even if
restricted to graphs of degree at most three [11].
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Fig. 3. Illustrating the reduction from VC(k) to p-Split-MMO(3). (a) An instance of
VC(k) with four vertices and five edges. (b) The instance of p-Split-MMO(3) con-
structed from (a).

The reduction is as follows. (See Fig. 3 for an example.) Suppose we are
given an instance G = (V,E) of VC(k), where G has degree at most three. Write
V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}. We construct an instance G′ of p-
Split-MMO(3) by defining: (i) a set U = {u1, u2, . . . , un} of n vertices, where each
ui corresponds to vi ∈ V ; and (ii) a set W = {w1, w2, . . . , wm} of m vertices,
where each wj corresponds to ej ∈ E. In addition, we prepare: (iii) n + m
complete graphs with six vertices each, denoted by GV

1 through GV
n and GE

1

through GE
m. Let V (GV

i ) = {ui,1, ui2 , . . . , ui,6} for each i ∈ {1, 2, . . . , n} and
V (GE

j ) = {wj,1, wj2 , . . . , wj,6} for each j ∈ {1, 2, . . . ,m}. The vertex set of G′ is
thus U ∪ W ∪ V (GV

1 ) ∪ V (GV
2 ) ∪ · · · ∪ V (GV

n ) ∪ V (GE
1 ) ∪ V (GE

2 ) ∪ · · · ∪ V (GE
m).

Next, insert the following edges into the edge set of G′ (which already includes
the edges of GV

1 through GV
n and GE

1 through GE
m): (iv) edges {uh, wj} and

{ui, wj} if ej = {uh, ui} ∈ E for each j ∈ {1, 2, . . . ,m}; (v) an edge {ui, ui,h}
for each i ∈ {1, 2, . . . , n} and each h ∈ {1, 2, . . . , 6}; and (vi) an edge {wj , wj,h}
for each j ∈ {1, 2, . . . ,m} and each h ∈ {1, 2, . . . , 5}. Note that each ui in G′

has degree equal to (6 + the degree of vi in G) and every wj in G′ has degree 7.
Finally, we set p = k. This completes the reduction.

Next, we show that G has a vertex cover with size at most p if and only if
G′ has a p-split orientation whose cost is at most three.

(⇒) Suppose that G has a vertex cover C of size p. Let C ′ ⊆ U be the
p vertices in G′ that correspond to vertices in C. Apply a split operation on
each ui ∈ C ′ to transform it into a pair of vertices ui and u∗

i , the first one
(ui) being adjacent to all six vertices from GV

i and the second one (u∗
i ) being

adjacent to the at most three neighbors from W . Let G′′ be the resulting graph.
By definition, G′′ is obtained by applying a p-split to G′ and we will now show
that G′′ admits an orientation of cost three.

First, every GV
i forms a K7 (a complete graph with seven vertices) together

with ui in G′′. Orient each such K7 so that all of its vertices have outdegree three,
e.g., by applying Proposition 2 in [3]. Secondly, orient the (at most three) edges
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incident to each u∗
i -vertex away from u∗

i . Since C is a vertex cover, every wj-
vertex in G′ will be incident to at most one unoriented edge of the form {ui, wj}
after this step is done. Next, for each wj , if there is one unoriented edge of the
form {ui, wj} then orient it away from wj . Finally, every wj and GE

j form a K7

with one edge incident to wj missing; orient this subgraph as above, but let wj

have one less outgoing edge than the other vertices so that the outdegree of each
such vertex is at most three. This yields an orientation of G′′ of cost three.

(⇐) Suppose G′ has a p-split orientation of cost at most three. If some
vertex ui,h in GV

i was split then we obtain another p-split orientation of cost at
most three by not splitting ui,h but splitting ui instead and orienting the edges
of the resulting K7 as described above, and similarly for vertices in GE

j . We may
therefore assume that every vertex that is split comes from U ∪W . Next, if some
vertex wj in W is split and it has an incident ui-vertex that is not split then
we replace the split operation on wj by a split operation on ui; by doing so and
orienting the edge between ui and wj towards wj , the cost of the orientation
will not increase. This produces a p-split orientation of G′ in which every vertex
from W is incident to at least one vertex from the set of (at most p) vertices
from U that were split, which then gives a vertex cover of G of size at most p. 	

Corollary 1. For any constant ε > 0, it is NP-hard to approximate p-Split-
MMO to within a factor of 4

3 − ε, even for unweighted graphs.

Proof. In the reduction in the proof of Theorem 2, there always exists a p-split
orientation Λ′ of G′ satisfying c(Λ′) ≤ 4, as can be seen by ignoring all available
split operations and just orienting the at most two edges of the form {ui, wj}
for each wj away from wj and all other edges as in the first part of the proof
of Theorem 2. Since there exists a p-split orientation Λ′ with c(Λ′) ≤ 3 if and
only if the given instance of VC(k) has a vertex cover with size at most k, the
above reduction is a gap-introducing one, i.e., if there existed a polynomial-time
( 43−ε)-approximation algorithm for p-split-MMO(3), then VC(k) could be solved
in polynomial time. 	


5 Edge-Weighted Graphs, Bounded p

In this section, we prove that p-Split-MMO on edge-weighted graphs is weakly
NP-hard even if restricted to p = 1. To do so, we give a polynomial-time
reduction from the Partition Problem, defined as follows: Given a set S =
{s1, s2, . . . , sn} of n positive integers, determine if there exists a subset S′ ⊆ S
such that

∑
si∈S′ si =

∑
sj∈S\S′ sj . The Partition Problem is weakly NP-hard

and admits a pseudopolynomial-time solution [11].

Theorem 3. 1-Split-MMO is weakly NP-hard even if the input is restricted to
edge-weighted wheel graphs.

Proof. We construct an edge-weighted, undirected graph G = (V,E,w) from any
given instance S = {s1, s2, . . . , sn} of the Partition Problem. Define K =

∑n
i=1 si

2
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Fig. 4. Let S = {1, 2, 4, 5, 6} be an instance of the Partition Problem. The reduction in
the proof of Theorem 3 sets K = 9 and constructs the edge-weighted graph G above.

and assume without loss of generality that si ≤ K for all si ∈ S. The ver-
tex set V consists of: (i) n vertices representing the integers in S and denoted
by v1, v2, . . . , vn; and (ii) one special vertex, denoted by vc. The edge set E con-
sists of: (iii) the n edges {v1, v2}, {v2, v3}, . . . , {vn, v1} forming a cycle; and (iv) the
n edges {vc, v1}, {vc, v2}, . . . , {vc, vn} forming a star. (Hence, G is a wheel graph.)
For every edge e of type (iii), assign w(e) = K. For every edge {vc, vi} of type (iv),
assign w({vc, vi}) = si. An example is shown in Fig. 4.

Below, we show that the answer to the given instance S of the Partition
Problem is yes if and only if G has a 1-split orientation whose cost is at most K.

(⇒) If there exists an S′ ⊆ S such that
∑

si∈S′ si =
∑

sj∈S\S′ sj then apply a
split operation on the vertex vc and let the two resulting vertices vc,1 and vc,2 be
adjacent to the set of vertices of type (i) representing S′ and S \S′, respectively.
For i ∈ {1, 2}, orient every edge that involves vc,i away from vc,i. Orient the
remaining n edges so that they form a directed cycle v1 → v2 → · · · → vn → v1.
This way, the weighted outdegree of every vertex is at most K.

(⇐) Let Λ′ be a 1-split orientation of G of cost at most K. If S contains a
single element equal to K then the answer to the given instance of the Partition
Problem is trivially yes. On the other hand, if si �= K for all si ∈ S then we claim
that the vertex in G to which the split operation was applied is vc. To prove the
claim, suppose the split operation was applied to some other vertex vj , where
j ∈ {1, 2, . . . , n}, thereby replacing vj by two vertices vj,1 and vj,2. Each of the
n edges not involving vc has weight K, so at most one of the n + 1 vertices in
{v1, v2, . . . , vn, vj,1, vj,2} \ {vj} can orient its edge involving vc towards vc. Let
the weight of this edge be sk. Then the weighted outdegree of vc is 2K −sk > K
because si < K for all si ∈ S, contradicting that the cost of Λ′ is at most K.
This proves the claim. Now, since the split operation was applied to vc (thus
replacing vc by two vertices vc,1 and vc,2) and the cost of Λ′ is at most K, each
of the n vertices in {v1, v2, . . . , vn} has one of the n edges of weight K oriented
away from it. This means that every edge of the form {vc,i, vj} is oriented away
from vc,i, and since the sum of these edges’ weights is 2K, each of vc,1 and vc,2

must have weighted outdegree exactly equal to K. Let S′ be the set of weights
of the edges incident to vc,1. Then

∑
si∈S′ si =

∑
sj∈S\S′ sj = K and the answer

to the given instance of the Partition Problem is yes. 	

Corollary 2. For every fixed integer p ≥ 1, p-Split-MMO on edge-weighted
graphs is weakly NP-hard.
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6 Edge-Weighted Graphs, Unbounded p

Here, we prove that p-Split-MMO with weighted edges is strongly NP-hard if p
is sufficiently large, i.e., p = Ω(n). This result is obtained via a polynomial-time
reduction from the 3-Partition Problem: Given a multiset S = {s1, s2, . . . , s3n}
of positive integers and an integer B such that B/4 < si < B/2 for every
i ∈ {1, 2, . . . , 3n} and

∑
si∈S si = n · B hold, determine if S can be partitioned

into n multisets S1, S2, . . . , Sn so that |Sj | = 3 and
∑

si∈Sj
si = B for every

j ∈ {1, 2, . . . , n}. The 3-Partition Problem is known to be strongly NP-hard [11].

Theorem 4. p-Split-MMO is strongly NP-hard even if the input is restricted to
edge-weighted cactus graphs.

Proof. We construct an edge-weighted, undirected graph G = (V,E,w) from any
given instance (S, B) of the 3-Partition Problem, where S = {s1, s2, . . . , s3n}.
Let p = n − 1 and recall that B =

∑3n
i=1 si

n by definition. G consists of:

• 3n subgraphs, G1 through G3n, each of which is associated with an element
in S. For each i ∈ {1, 2, . . . , 3n}, Gi contains three vertices ui, vi, and wi and
three edges {ui, vi}, {ui, wi}, and {vi, wi} (i.e., Gi is a triangle graph). The
weight of every edge in Gi is set to B.

• One special vertex vc.
• For i ∈ {1, 2, . . . , 3n}, an edge {vc, vi} of weight si that connects Gi to vc.

The constructed graph is a cactus graph. This completes the description of the
reduction. See Fig. 5 for an illustration.

Now we show that the answer to the 3-Partition Problem on input S is yes
if and only if the constructed graph G has a p-split orientation of cost B.
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Fig. 5. An instance of the 3-Partition Problem with S = {7, 7, 7, 8, 9, 10} and B = 24
yields the graph G shown above. In the construction, n = 2 and p = 2− 1 = 1.
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(⇒) If the answer to the 3-Partition Problem is yes, divide the elements of S
into n multisets S1, S2, . . . , Sn where every Sj has the sum B and |Sj | = 3.
Then, do p split operations on vc so that each of the resulting p+1 = n vertices,
called center vertices, becomes adjacent to exactly three vertices vx, vy, and vz,
where {sx, sy, sz} is one of the Sj-sets. By orienting all 3n edges involving center
vertices away from the center vertices, and for each i ∈ {1, 2, . . . , 3n}, orienting
the three edges {ui, vi}, {ui, wi}, and {vi, wi} as (ui, vi), (wi, ui), and (vi, wi),
we obtain a p-split orientation of G of cost B.

(⇐) Consider any p-split orientation Λ′ of G with cost B. Let σ be the total
number of split operations in this p-split that were done on vertices in the Gi-
subgraphs. First, we show by contradiction that σ = 0. Suppose σ ≥ 1. If we start
from G and apply a sequence of p−σ split operations to vc and the new vertices
created by these operations, vc will be replaced by a set of p − σ + 1 = n − σ
vertices, henceforth denoted by C. Call the 3n edges that contain a vertex from C
center edges. Due to the weights of the edges in each Gi-subgraph, if no split
operations are done on ui, vi, or wi then the center edge between vi and C
must be oriented away from C, but each split operation applied to a vertex of
the form ui, vi, or wi will allow at most one center edge to become oriented
towards C. Let W ′ be the sum of the weights of the center edges that were
oriented away from C in Λ′. By definition, the weight of every center edge is less
than B

2 , so W ′ > n · B − σ · B
2 . According to the pigeonhole principle, at least

one vertex in C must have weighted outdegree at least W ′/(n − σ). However,
W ′/(n−σ) > (n ·B −σ · B

2 )/(n−σ) > (n ·B −σ ·B)/(n−σ) = B, which is a
contradiction because the cost of the p-split orientation was B. Thus, σ = 0 and
|C| = p+1 = n. Next, note that if a vertex x in C was connected to four or more
vi-vertices then since these edges must be oriented away from C and each of them
has weight strictly larger than B

4 , the weighted outdegree of x would be strictly
larger than B, which is impossible. Finally, since each of the n vertices in C can
be connected to at most three vi-vertices and there are 3n vi-vertices in total, it
must be connected to exactly three vi-vertices and its weighted outdegree is B.
Letting the weights of the edges of each such vertex form one Sj-set then gives
a partition of S showing that the answer to the 3-Partition Problem is yes. 	


7 Concluding Remarks

This paper introduced the p-Split-MMO problem and presented a maximum
flow-based algorithm for the unweighted case that runs in polynomial time for
any constant p, and proved the NP-hardness of more general problem variants.
Future work includes developing polynomial-time approximation algorithms and
fixed-parameter tractable algorithms for the NP-hard variants. E.g., one could
try to approximate the minimum maximum weighted outdegree for a value of p
specified as part of the input, or approximate the smallest p for which some
specified upper bound on the maximum weighted outdegree is attainable.

Also, it would be interesting to study how the computational complexity of p-
Split-MMO changes if the output orientation is required to be acyclic or strongly
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connected. Borradaile et al. [5] recently showed that unweighted MMO with
either the acyclicity constraint or the strongly connectedness constraint added
remains solvable in polynomial time. In contrast, the closely related problem
of outputting a minimum lexicographic orientation of an input graph, which is
solvable in polynomial time for unconstrained orientations, becomes NP-hard for
acyclic orientations [5] while its computational complexity for strongly connected
orientations is still unknown.
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