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Abstract. Recent advances in biotechnology and web technology are
generating huge collections of similar strings. People now face the prob-
lem of storing them compactly while supporting fast pattern searching.
One compression scheme called relative Lempel-Ziv compression uses tex-
tual substitutions from a reference text as follows: Given a (large) set S
of strings, represent each string in S as a concatenation of substrings
from a reference string R. This basic scheme gives a good compression
ratio when every string in S is similar to R, but does not provide any
pattern searching functionality. Here, we describe a new data structure
that supports fast pattern searching.

1 Introduction

There is an increasing need for indexing methods that can store collections
of similar strings (or repetitive text) compactly while supporting fast pattern
searching queries. For example, in genomic applications, the sequencing of in-
dividual genomes is becoming a feasible task. The “1000 Genomes Project” [1],
aimed at characterizing common human genetic variations, has already sequenced
the partial genomes of a large number of persons from various populations. In
the near future, researchers will face the problem of storing those individual (and
highly similar) genomic sequences compactly and indexing them efficiently. As
another example, Wikipedia documents are continually modified and snapshots
are taken every day to remember older versions of the data. Typically, changes
between versions are small. Hence, fast indexing methods for similar texts may
allow people to search archived versions of Wikipedia documents quickly.

To compress a single string S of length n, methods that are guaranteed to
achieve the empirical k-order entropy nHk(S) are often used. However, this
entropy measurement may not be a good bound for repetitive texts whose repeats
are longer than k. For example, the entropy for storing the text SS (where
|S| > k) is greater than 2nHk(S). On the other hand, one can easily encode the
text in nHk(S)+O(1) space. Thus, there are methods which achieve the empirical
k-order entropy, yet perform poorly for repetitive texts [24]. As a consequence,
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compression methods have been designed for specific types of repetitive texts in
biology. Christley et al. [5] compressed DNA sequences with respect to a reference
sequence, and BioCompress [12] and XM [3] are other repetitive compressors
designed specifically for DNA. Alternative approaches include methods based
on grammar compression and LZ77 compression [26] for general repetitive texts.
These methods can store repetitive texts compactly, but do not allow random
access to the compressed text directly. Some previous work has addressed this
issue. Kreft and Navarro [14] provided the first efficient random access operations
for the LZ77 method. Bille et al. [2] built additional data structures on top of
an existing grammar-based compression scheme to allow random access of any
region with only logarithmic extra time per query.

However, one important operation on large text databases is indexing, in
which the occurrences of an arbitrary pattern inside the stored text need to be
located quickly. Some specialized data structures for indexing repetitive texts
have appeared recently. In a pioneering paper of Mäkinen et al. [19], a repetitive
text is defined as a collection of strings of total length N , where the strings
are assumed to be highly similar, each string length is approximately n, and
the strings share an alphabet of size σ. They employed run-length encoding to
reduce the redundancy of a suffix array structure. Their approach shrinks the
total index size greatly, but the space of the index is still proportional to the
number of strings. In another paper, Huang et al. [13] assumed that every string
contains at most m′ point mutations with respect to a reference string. They
designed a space-efficient data structure of size O(n log σ + m′ logm′) bits to
encode all such strings. Although the resulting data structure is small, their
approach cannot index certain other types of similar strings such as genome
rearrangements, formed by swapping substrings in genomic sequences, efficiently.
(When only a few such rearrangements have occurred, long substrings of the
genomic sequences will be preserved; they just occur in a different order.) Kreft
and Navarro [15] built a self-index based on LZ77 compression. If the text of
length N can be compressed using m LZ77 phrases, their data structure is of
size 2m logN +m logm + 5m logσ + O(m) + o(N) bits, but the query time is
O(�2h+(�+occ) logN), i.e., quadratic in the pattern length � and also dependent
on the maximal depth of the phrases h ≤ m. In another line of research, Claude
and Navarro [6] proposed a self-index for grammar-based compression methods.
It uses O(r log r)+r logN bits, where r is the number of rules in their grammar,
and the resulting query time is quadratic (O((�2+h(�+occ)) log r)). Some results
for LZ78 compression and FM-index were given in [8]; on the negative side, these
methods require O(NHk) bits in the worst case, and they may not be good
enough to index a repetitive text in practice [24] or in theory [23]. In summary,
existing indexes for a set of similar strings either require: (1) a lot of space,
(2) that the indexed text has some special structure, or (3) quadratic query time.

New Results: Our main contribution is a data structure that stores a set S of
strings and a reference string R in asymptotically almost optimal space, while
providing almost linear-time pattern searching queries, as follows:
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Theorem 1. Given a reference string R of length n over an alphabet Σ of size σ
and a set of strings S = {S1, . . . , St} over Σ, let m be the smallest possible
number of factors to represent S with respect to R. All exact occurrences of any
query pattern P of length � can be reported within either of the following space
and time complexities:

(a) 2nHk(R) + 5.55n+O(m log n) bits and O(�(log σ + logn
log logn ) + occ · (log n+

logm
logn )) query time; or, alternatively,

(b) 2nHk(R) + 5.55n+O(m log n log logn) bits and O(�(log σ+ log logn)+ occ ·
(logn+ logm

logn )) query time,

where occ is the number of occurrences of P .

In this paper, we assume that the reference R is given. In case no such R is
available, we can apply the method of Kuruppu et al. [17] to find a suitable one.

We compress each sequence in S using a new variant of the relative Lempel-
Ziv (RLZ) compression scheme from [16]. RLZ represents each Si ∈ S as a
concatenation of substrings of R (referred to as factors) obtained from the LZ77-
like factorization of R. See Fig. 1 for an example. Experiments on large scale
genomic data in [16] have shown that this method yields good compression ratios
for repetitive texts even when parts of the sequence are rearranged.

Our pattern searching algorithm follows a “standard” strategy for strings
decomposed into factors. It considers two cases: case 1, where the pattern P is
a substring of a single factor; and case 2, where P crosses at least one boundary
between two factors. (See Fig. 2.) For case 2, the pattern is usually divided into
two parts: left and right. The left part ends at one end of a factor, and the right
part begins at the start of another factor. Each part is searched independently
and then joined together by an appropriate 2D range query data structure.

Although using the same basic strategy, the currently existing methods require
quadratic time for pattern searching due to the fact that they need to re-search
the left part and right part for each possible boundary between two factors.
In our approach, we deploy multiple tricks to search all the possible left parts
and right parts in only one run, and combine the results effectively. Notably,
for the left part search (Section 4), we observe a mapping between the suffix
array of the factors and the reference sequence, and then simulate the search in
factors using the data structure for the reference. To implement the right part
search (Sections 5-6), we use dynamic programming and backward search to
utilize the results of previous searches. Note that these techniques are only valid
because of the properties provided by the RLZ compression scheme. According
to Theorem 1 above, the total space used by our data structure which supports
fast pattern searching queries is only O(nHk(R) + n+m logn) bits, where m is
the minimal number of encoding factors. This is very close to the minimal space
required by any RLZ variant, which is Ω(nHk(R) +m logn) bits.

We remark that recently, Gagie et al. [10] independently proposed a similar
method to index a set of sequences. Their space complexity is O(nHk(R) +
n + m(logn + logm log logm)) bits, and the query time is O((� + occ) logε n),
where ε > 0. (Thus, their method always uses more space than the method in
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our Theorem 1 (a) above but is faster, and is incomparable to the method in
Theorem 1 (b).) Also note that in their method, the reference must be equal to
one of the sequences in S since otherwise false occurrences may be reported.

The paper is organized as follows. Section 2 defines the notation used through-
out the paper and outlines the framework of our new data structure. Section 3
describes some auxiliary data structures from the literature used in our con-
struction. Section 3 also presents a new data structure for answering a restricted
type of 2D range queries. Sections 4 – 6 describe further technical details of our
main data structure. Due to space limitations, the focus will be on describing
the construction of our new data structure; correctness proofs and additional
intermediate explanations will be available in the full version of the paper.

2 Data Structure Framework

2.1 The Relative Lempel-Ziv (RLZ) Compression Scheme

Let R be a reference sequence of length n over an alphabet Σ and let S =
{S1, . . . , St} be a given set of strings over Σ. Each sequence Si ∈ S is compressed
based on R by relative Lempel-Ziv (RLZ) compression [16], defined next: Given
two strings S and R, where R contains all the symbols in S, the Lempel-Ziv
factorization (or parsing) of S relative to R, denoted by LZ(S|R), is a way to
express S as a concatenation of substrings of the form S = w0w1w2 . . . wz such
that: (1) w0 is an empty string; and (2) wi for i > 0 is a non-empty substring
of S and wi is the longest prefix of S[(|w0..wi−1| + 1)..|S|] that occurs in R.
Each substring wi is called a factor (or phrase), and can be represented by a
pair of numbers (pi, li), where pi is a starting position of wi in R and li denotes
the length of wi. LZ(S|R) can be computed in linear time [16]. By definition,
the decomposition guarantees that no factor can be expanded any further to the
right. Furthermore, the RLZ compression scheme has the following property:

Lemma 1. LZ(S|R) represents S using the smallest possible number of factors.

R = ACGTGATAG

S1 = TGATAGACG = TGATAG, ACG = 8 2
S2 = GAGTACTA = GA, GT, AC, TA = 5 6 1 7
S3 = GTACGT = GT, ACGT = 6 3
S4 = AGGA = AG, GA = 4 5

(a)

T [...] Factor Pos. inR

1 AC 1..2

2 ACG 1..3

3 ACGT 1..4

4 AG 8..9

5 GA 5..6

6 GT 3..4

7 TA 7..8

8 TGATAG 4..9

(b)

Fig. 1. (a) A reference string R and a set of strings S = {S1, S2, S3, S4} decomposed
into the smallest possible number of factors from R. (b) The array T [1..8] (to be defined
in Section 2) consists of the distinct factors sorted in lexicographical order.
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We will need some more definitions. Let m be the minimum number of factors
required to represent all of S with respect to R. Denote the Lempel-Ziv factor-
ization of each Si relative to R by Si = Si1Si2 . . . Sici for i = 1, 2, . . . , t. Next,
take all the s distinct factors that appear in the factorizations for S and let
T [1..s] be an array containing these factors sorted in lexicographical order (see
Fig. 1 (b)). Define m =

∑t
i=1 ci. Note that s ≤ min{n2,m}. Our data structure

stores T [1..s] in O(s log n) bits by encoding each T [j] by its starting and ending
positions in the reference string R, and the set S in O(m log s) = O(m log n)
bits by representing each Si ∈ S as a list of indices from T [1..s] (see Fig. 1 (a)).

Let F [1..m] be the lexicographically sorted array of all non-empty suffixes in
S that start with a factor; i.e., each element F [y] is of the form SipSi(p+1) . . . Sici ,
and is called a factor suffix from here on. For any string x, x denotes its reverse.
Let T [1..s] be an array of all reversed distinct factors Sij sorted lexicographically.

2.2 Pattern Searching

To find the occurrences of a query pattern P in S, we follow the basic strategy
briefly mentioned in Section 1. Suppose P is a query pattern. Each occurrence
of P in S1, . . . , St belongs to one of the following two main cases; see Fig. 2:

• Case 1: P lies completely inside one factor, denoted by Sip.
• Case 2: P is not a substring of a single factor, i.e., P = XSip . . . SiqY , where
X is a suffix of Si(p−1) and Y is a prefix of Si(q+1).

(Observe that the case P = XY is an instance of case 2.) To locate all occurrences
of P , our data structure uses a number of auxiliary data structures, as explained
next, to report all occurrences of P in S according to case 1 and case 2 separately.
Summing all their complexities together yields Theorem 1 above. Let occ1 and
occ2 be the number of occurrences of P as in case 1 and case 2, respectively.

Case 1: [P occurs inside a factor] We use the data structure I(T ) defined in
Section 4 to find all occurrences of P in O(|P | + occ1 logn) time (Theorem 2).
The data structure is of size 2n+o(n)+O(s logn) bits. See Section 4 for details.

Case 2: [P is not a substring of a single factor] As illustrated in Fig. 2, in this
case, every occurrence of P can be divided into two parts: the left part (the suffix
of a factor), and the right part (starting with a factor). We use three additional

Si p

Si

P

Si p Si p+1 Si q

P

Si
X Y

Fig. 2. When P occurs in string Si, there are two possibilities, referred to as case 1 and
case 2. In case 1 (shown on the left), P is contained inside a single factor Sip. In case 2
(shown on the right), P stretches across two or more factors Si(p−1), Sip, . . . , Si(q+1).
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data structures: (i) X (T ) to find the left parts; (ii) Y(F, T ) to find the right parts
by dynamic programming; and (iii) M to report the correct combinations of the
left parts and right parts. The technical details of X (T ), Y(F, T ), and M are
given in Sections 5, 6, and 3, respectively. Their usage is summarized as follows:

(i) X (T ) in Section 5 uses O(s logn)+o(n) bits space. It finds all occurrences of
prefixes of P that are equal to a suffix of a factor Si(p−1) in O(|P | log logn)
time, More precisely, X (T ) returns, for every j, the maximal range stj ..edj
in T such that P [1..j] is a prefix of every element in T [stj ], . . . , T [edj ].

(ii) Y(F, T ) in Section 6 uses 2.55n+2nHk(R)+O(m log n) bits space. It finds
all occurrences of suffixes of P that are equal to a prefix of a factor suffix
in F , i.e., Sip . . . SiqY , where Y is a prefix of Si(q+1), in O(|P | log σ log logn)
time. More precisely, Y(F, T ) returns, for every j, the maximal range st′j ..ed

′
j

such that P [(j + 1)..|P |] is a prefix of every element in F [st′j ], . . . , F [ed′j].
(iii) Encode all combinations ofX and Sip . . . SiqY that are adjacent in some Si ∈

S as follows: Define M to be a binary (s×m)-matrix where M [x, y] = 1 iff
T [x] is the preceding factor of the suffix F [y], i.e., F [y] = SipSi(p+1) . . . Sici

and Si(p−1) = T [x] is the x-th lexicographically smallest in T . Note that each
column of the matrix M contains exactly one 1. All case 2 occurrences of P
can be found by listing the entries equal to 1 in the rectangles [stj , edj ] ×
[st′j , ed

′
j] in M , for all j. Section 3 gives two alternative 2D range query

data structuresM that support the operation query 2d(M, [st, ed], [st′, ed′])
on M for finding these entries: If M is of size O(m log s log log s) bits, all
entries equal to 1 can be found in O((1 + occ) log log s) time, and if M is of
size O(m log s) bits, the query takes O(log s/ log log s+ occ · logε s) time.

As a final step, we decode all occurrences of case 1 and 2 to find their actual
locations in S. A simple array of m logn bits is used to store sampled occurrences
and an extra O(logm/logn) time for reporting each occurrence is required. (Due
to space constraints, the details are deferred to the full version of this paper.)

3 Some Useful Auxiliary Data Structures

Rank and Select and Integer Data Structures: Let B[1..n] be a bit vector
of length n with k ones and n − k zeros. The rank and select data structure
supports two operations: rankB(i) returns the number of ones in B[1..i]; and
selectB(i) returns the position in B of the ith one. Given an array A[1..n] of non-
negative integers, where each element is at most m, we are interested in the fol-
lowing operations: max indexA(i, j) returns argmaxk∈i..j A[k], and
range queryA(i, j, v) returns the set {k ∈ i..j : A[k] ≥ v}. We also need one
more operation for the case when A[1..n] is sorted in non-decreasing order, called
successor indexA(v), which returns the smallest index i such that A[i] ≥ v. The
data structure for this operation is called the y-fast trie [25]. The complexities
of some existing data structures supporting the above operations are listed in
the next table.
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Operation Extra space Time Reference Remark
rankB(i), selectB(i) log

(
n
k

)
+ o(n) O(1) [22]

max indexA(i, j) 2n+ o(n) O(1) [9]
range queryA(i, j, v) O(n logm) O(1 + occ) [20], p. 660
successor indexA(v) O(n logm) O(log logm) [25] A is sorted

The Suffix Array and BWT Index: Consider any string R with a special
terminating character $ which is lexicographically smaller than all the other
characters. The suffix array SAR is the array of all suffixes of R sorted lexico-
graphically. Any substring x of R can be represented by a pair of indices (st, ed),
called a suffix range or SAR-range. For any given string P specified by its suffix
range (st, ed) in SAR, a BWT (Burrows-Wheeler transform) index of R supports
the following operations: lookupR(i) returns the value of SAR[i]; ΨR(i) returns
the index j such that SAR[j] = SAR[i] + 1; and backward searchR(c, (st, ed)),
where c is any character, returns the suffix range in SAR of the string cP .

Given any string R of length n over an alphabet of size σ, [7,18] showed how
to construct a BWT index of R that uses nHk(R) + o(n) bits and supports
backward searchR in O(log σ) time and ΨR in O(1) time. Using an additional
n+ o(n) bits, lookupR can be supported in O(log n) time.

A general BWT index is a BWT index extended to alphabets of unbounded
size. The next lemma is our simple extension of the normal BWT to the general
BWT case, obtained by applying the result from [11] and some additional arrays:

Lemma 2. Given any string S of length m over an alphabet of size s, there
exists a general BWT index of S that uses m log s+ o(m log s) bits and supports
backward searchS in O(log log s) time and ΨS in O(1) time. Using an additional
m log s+ o(m log s) bits, lookupS can be supported in O(logm/ log s) time.

A New Data Structure for a Special Case of 2D Range Queries:We now
describe the 2D range query data structure mentioned in Section 2 for case 2.
This data structure, called M, helps to combine the results of X (T ) and Y(F, T )
to form the final answers for case 2. Let M be a binary (s×m)-matrix. We define
M [x, y] = 1 if T [x] is the preceding factor of the factor suffix F [y]. The operation
query 2d(M, [a1, a2], [b1, b2]) reports all points in the rectangle [a1, a2] × [b1, b2]
in M whose values are 1. Here, [a1, a2] and [b1, b2] specify consecutive rows and
consecutive columns of M , respectively. Using existing results by Chan et al. [4]
and Nekrich [21], we can improve the time complexity for 2D range queries for
the special case when each column of M contains exactly one 1. We obtain:

Lemma 3. Let M be a given binary matrix of size s×m, where s ≤ m and every
column contains exactly one entry equal to 1. We can store M while supporting
query 2d(M, [a1, a2], [b1, b2]) within the following space and time complexities:

1. O(m log s log log s) bits and O((1+occ) log log s) query time; or, alternatively,
2. O(m log s) bits and O(log s/ log log s+ occ · logε s) query time,

where ε > 0 is a constant and occ is the number of 1s in the specified rectangle.
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4 The Data Structure I(T ) for Case 1

Recall from Section 2 that the array T [1..s] stores the s distinct factors of R
that occur in the factorizations of S in lexicographical order. Here, we define
a data structure named I(T ) and apply it to locate all occurrences of a query
pattern P that lie entirely inside single factors in T [1..s] (case 1 in Section 2).
The main result of this section is summarized in the following theorem:

Theorem 2. The data structure I(T ) uses 2n + o(n) + O(s log n) bits. Given
the suffix range st..ed of a query pattern P in SAR, it reports all occurrences
of P inside factors stored in T [1..s] using O(occ1 logn) time, where occ1 is the
number of answers.

A naive solution is to concatenate all the factors in T [1..s] and then build a
suffix tree or an FM-index, but the space used by such an approach would be
proportional to the total size of S. Instead, we formulate the problem as an
interval cover problem. For each i ∈ {1, 2, . . . , s}, define spi and epi as the
starting and ending positions of the factor T [i] inside the reference string R, i.e.,
T [i] = R[spi..epi]. We say that any factor T [i] covers a position p if spi ≤ p ≤ epi.
Also, factor T [i] is to the left of factor T [j] if either: (1) spi < spj; or (2) spi = spj
and epi < epj . Let G[1..s] be an array of indices such that G[i] = j if T [j] is the i-
th leftmost factor. To be able to convert between indices, we define Is[j] = spG[i]

and Ie[j] = epG[i]. Note that Is[1] is the starting position of the leftmost factor
and that the values of Is[1..s] are non-decreasing.

Next, for every p ∈ {1, 2, . . . , n}, define D[p] = maxj=1..s{Ie[j]−p+1 : Is[j] ≤
p}. Intuitively, D[p] measures the distance from position p to the rightmost
ending position of all factors that cover p. Let D′[1..n] be an array such that
D′[p] = D[SAR[p]]. (For an example, see Fig. 3 (a).) D′[p] tells us the length of
the longest interval whose starting position equals SAR[p]. Hence, we can check
if a substring of R is covered by at least one factor according to the next lemma:

A C G T G A T A G

D 4 3 2 6 5 4 3 2 1

SAR 1 8 6 2 9 5 3 7 4
D’ 4 2 4 3 1 5 2 3 6

1
1
1
3
4
5
7
8

2
3
4
4
9
6
8
9

Is Ie
1
2
3
6
8
5
7
4

G A C G T G A T A G 

SAR 1 8 6 2 9 5 3 7 4 
B 1 1 0 0 0 1 1 1 1 

 {2,3,4} {2} {2} {2} {2} {5} 

L[1] 

L[2] 
L[3] 
L[4] 
L[5] 
L[6] 

1 
2 
3 
4 
5 
6 
7 
8 

T id 
2 
3 
4 
4 
9 
6 
8 
8 

len 
0 
0 
1 
1 
1 
1 
1 
1 

C 

(a) (b)

Fig. 3. (a) The factors (displayed as grey bars) from the example in Fig. 1 listed in left-
to-right order, and the arrays G, Is, Ie, D, and D′ that define the data structure I(T )
in Section 4. (b) The same factors ordered lexicographically from top to bottom, and
the arrays B,C, and Γ that define the data structure X (T ) in Section 5.
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Algorithm Search Pattern(st, ed)

Input: The data structure I(T ) and the suffix range st..ed of the pattern P in SAR.
Output: Every factor T [j] in which P occurs.

1: Compute q = max indexD′(st, ed)
2: if D′[q] ≥ |P | then
3: Report all factors that cover SAR[q]..(SAR[q] + |P | − 1) using Lemma 5
4: Search Pattern(st, q − 1)
5: Search Pattern(q + 1, ed)
6: end if

Fig. 4. Algorithm for computing all occurrences of P in T [1..s]

Lemma 4. For any index p and length �, there exists a factor T [j] that covers
positions SAR[p]..(SAR[p] + �− 1) in R if and only if D′[p] ≥ �.

Now, we describe the new data structure I(T ). It consists of: (i) The arrayG[1..s],
using s logn bits; (ii) A successor data structure (see Section 3) for Is, using
s logn+ o(n) bits; (iii) A range maximum data structure (see Section 3) for Ie,
using 2s + o(s) bits; and (iv) A range maximum data structure for D′, using
2n+ o(n) bits. Note that we do not explicitly store the arrays D[1..n], D′[1..n],
Is[1..s], and Ie[1..s]. Lemma 5 shows how to recover the values of D[p] and D′[p]
for any position p ∈ {1, 2, . . . , n} from the data structure I(T ). Also, Is[i] and
Ie[i] can be computed in O(1) time given G[i] and information about the factors.

Lemma 5. Given two positions p and q in R, we can: (i) Compute D[p] in O(1)
time and D′[p] in O(log n) time; and (ii) Report all factors that cover positions
p..q in O(1 + occ) time.

Based on I(T ) and the suffix range for the query pattern P , Algorithm
Search Pattern in Fig. 4 computes all occurrences of P in factors from T [1..s].
Let st..ed be the suffix range of P in SAR. The algorithm recursively finds every
index q such that st ≤ q ≤ ed (lines 4 and 5) and D′[q] ≥ |P | (lines 1 and 2). By
Lemma 4, this condition guarantees that SAR[q] and SAR[q] + |P | − 1 are cov-
ered by at least one factor. Since st ≤ q ≤ ed, it holds that R[SAR[q]..(SAR[q]+
|P |− 1)] is an occurrence of P in R. Then, the algorithm reports every T [j] that
contains P by using Lemma 5 on line 3.

5 The Data Structure X (T ) for Case 2

We now turn our attention to case 2 in Section 2 (see Fig. 2 (b)). This section
gives the details of the data structure X (T ) which supports the following query:
for any given pattern P , locate every occurrence of a prefix of P that equals a
suffix X of a factor of S.

First, note that each of the |P | − 1 non-empty proper prefixes of P may be
considered separately as a query pattern for X (T ). Therefore, we only consider
how to locate the occurrences of the entire P as suffixes of factors. Secondly,
we assume that P is specified by the corresponding suffix range stP ..edP in the
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suffix array SAR for the reference string R, along with the length of P . Thirdly,
recall that the array T [1..s] stores the s distinct factors of the form Sij ∈ S sorted
lexicographically, and that T [1..s] stores all reversed distinct factors Sij sorted
lexicographically. Thus, X (T ) will output the maximal range p..q in T such
that P is a prefix of every element in T [p], . . . , T [q]. In Section 6, we will also
need the symmetric data structure X (T ) which, for any given query pattern P ,
outputs the maximal range p..q in T such that P is a prefix of every element
in T [p], . . . , T [q]. To simplify the presentation, we only describe X (T ) below.

Theorem 3. The data structure X (T ) uses O(s logn)+o(n) bits. For any suffix
range st..ed in SAR of a query pattern P , it can report the maximal range p..q
such that P is a prefix of all T [j], where p ≤ j ≤ q, in O(log logn) time.

Since the factor T [j] is a substring of R, let stj ..edj denote the corresponding
suffix range of T [j] in SAR. For every i = 1, . . . , n, define Γ (i) = {|T [j]| : stj = i
and stj ..edj is the suffix range of T [j] in SAR}. In other words, Γ (i) is the set
of lengths of factors whose suffix ranges start at i in SAR. We use Γ (i) to map
a suffix range in SAR to a range of factors in T according to:

Lemma 6. Suppose stP ..edP is the suffix range of P in SAR. Then, p..q is
the range in T [1..s] such that P is a prefix of all T [j] where p ≤ j ≤ q, where

p = 1 +
∑stP−1

i=1 |Γ (i)|+ |{x ∈ Γ (stP ) : x < |P |}| and q =
∑edP

i=1 |Γ (i)|.
Now, we define X (T ) based on Lemma 6. First, let B[1..n] be a bit vector such
that B[i] = 1 if Γ (i) is non-empty, and B[i] = 0 otherwise. Next, suppose Γ (i) is
the r-th non-empty set, and let L[r] be a y-fast trie [25] for Γ (i) (see Section 3).
Let C[1..s] be a bit vector such that C [

∑r
i=1 |Γ (i)|] = 1, and 0 otherwise. See

Fig. 3 (b). We define X (T ) to consist of three parts: (i) The rank data structure
for the bit vector B[1..n] (s logn+o(n) bits); (ii) The select data structure for the
bit vector C[1..s] (s logn+o(n) bits); and (iii) The y-fast trie data structure L[r]
for Γ (i) if Γ (i) is the r-th non-empty set (O(s log n) bits). In total, X (T ) requires
O(s log n) + o(n) bits.

Note that, for any �, we have
∑�

i=1 |Γ (i)| = selectC(rankB(�)) and |{x ∈ Γ (�) :
x < c}| = successor index(L[rankB(�)], c). Using X (T ), they can be computed
in O(log logn) time. Hence, the values of p and q in Lemma 6 can be computed
in O(log logn) time. Theorem 3 follows.

6 The Data Structure Y(F, T ) for Case 2

Our next task is: Given any pattern P , compute the range of P [i..|P |] in F
for 1 ≤ i ≤ |P |, i.e., the range st..ed in F such that P [i..|P |] is a prefix
of F [st], . . . , F [ed]. Let Q[i] denote the range for each i. This section introduces
a data structure Y(F, T ) which allows us to compute these ranges efficiently:

Theorem 4. The data structure Y(F, T ) uses 2.55n + 2nHk(R) + O(m log n)
bits. It can find all suffix ranges of F that match some suffix of a query pattern P
in O(|P |(log σ + log logn)) time.

For any F [i], define the head of F [i] to be the first factor of F [i]. Let S be the con-
catenation of the factor representations of all strings in S, and let B be a general
BWT index of S (see Section 3) supporting backward searchS(T [i], (st, ed)).
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The array Q[i] can be computed as follows. Define A[i] = P [i..j], where j is
the largest index such that P [i..j] is a factor of S, if one exists, and nil otherwise.
Let Y [i] be the range st..ed in F such that P [i..|P |] is the prefix of all the heads
of factor suffixes F [st]..F [ed], if one exists, and nil otherwise. Then:

Q[i] =

⎧
⎪⎨

⎪⎩

Y [i] if Y [i] �= nil

backward searchS(A[i], Q[i+ |A[i]|]) if Y [i] = nil & A[i] �= nil

nil otherwise

(1)

By Equation (1), Q[1..|P |] can be computed in three steps: (a) Compute A[i] for
i = 1 to |P |; (b) Compute Y [i] for i = |P | to 1; and (c) Compute Q[i] for i = |P |
to 1. Next, we present the data structure Y(F, T ) and discuss steps (a)–(c). The
data structure Y(F, T ) consists of:
• The BWT of R and the BWT of R. Used to compute A[1..|P |].
• The data structure X (T ) (see Section 5). Used to compute A[1..|P |], Y [1..|P |].
• The select data structure for a bit-vector V [1..m], defined by V [i] = 1 if the
head of F [i] differs from the head of F [i + 1], and V [i] = 0 otherwise. Used
to compute Y [1..|P |].

• The general BWT index B of S. Used to compute Q[1..|P |].
In step (a), we compute A[1..|P |] in O(|P |(log σ+log logn)) time by using X (T )
along with a bi-directional BWT index. In step (b), we compute Y [1..|P |] in two
phases. The first phase computes another array Y ′[1..|P |], defined as follows:
Y ′[i] is the range st′..ed′ in T such that P [i..|P |] is the prefix of T [st′], . . . , T [ed′].
By using the X (T ) data structure from Section 5, we can obtain Y ′[1..|P |].
Then, given Y ′[1..|P |], the second phase computes Y [1..|P |] with the select
data structure for V as follows: Y [i] = (selectV (st − 1) + 1, selectV (ed)), where
(st, ed) = Y ′[i]. Finally, in step (c), we apply Equation (1) to compute Q[1..|P |].
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