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Abstract

We consider the following problem: Given a set T of rooted triplets with leaf set L, determine whether there exists a phylogenetic
network consistent with T, and if so, construct one. We show that if no restrictions are placed on the hybrid nodes in the solution,
the problem is trivially solved in polynomial time by a simple sorting network-based construction. For the more interesting (and
biologically more motivated) case where the solution is required to be a level-1 phylogenetic network, we present an algorithm
solving the problem in O(|T|2) time when T is dense, i.e., when T contains at least one rooted triplet for each cardinality three
subset of L. We also give an O(|T|5/3)-time algorithm for finding the set of all phylogenetic networks having a single hybrid node
attached to exactly one leaf (and having no other hybrid nodes) that are consistent with a given dense set of rooted triplets.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

A phylogenetic network is a generalization of a phylogenetic tree in which internal nodes are allowed to have more
than one parent. Phylogenetic networks are used to represent evolutionary relationships that cannot be adequately
described in a single tree structure due to evolutionary events such as recombination, horizontal gene transfer, or hybrid
speciation which imply convergence between objects [10,11,20,21,23].

Several methods for constructing and for comparing phylogenetic networks have been proposed recently
[4,6,10,19–21,23]. In this paper, we consider the problem of constructing a phylogenetic network from a set of rooted
triplets (see below for a formal problem definition). In particular, we assume that the input forms a dense set, meaning
that the input contains at least one rooted triplet for each cardinality three subset of the objects being studied, and that
the underlying phylogenetic network is a level-1 network, meaning that each biconnected component in the undirected
version of the network induces a subgraph in the directed version of the network that has at most one node with two
parents. The biological significance of level-1 phylogenetic networks, there referred to as galled-trees, is discussed
in [10]. The rationale for assuming the input to consist of rooted triplets is that although computationally expensive
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Fig. 1. Let N be the level-1 phylogenetic network on the left. The rooted triplet ({b, c}, e) shown on the right is consistent with N. Note that ({c, e}, b)

is also consistent with N.

methods for constructing reliable phylogenetic trees such as maximum likelihood are infeasible for large sets of objects,
they can be applied to infer highly accurate trees for smaller, overlapping subsets of the objects (see, e.g., [5]). One may
thus apply maximum likelihood to each cardinality three subset L′ of the objects and then select the most likely rooted
triplet for L′ to get a dense input set. 1 Moreover, in some applications, the data obtained experimentally may already
have the form of rooted triplets; for example, Sibley-Ahlquist-style DNA–DNA hybridization experiments (see [17])
can yield rooted triplets directly.

1.1. Definitions

A rooted triplet is a binary, rooted, unordered tree with three distinctly labeled leaves. The unique rooted triplet on
leaf set {x, y, z} in which the lowest common ancestor of x and y is a proper descendant of the lowest common ancestor
of x and z (or equivalently, where the lowest common ancestor of x and y is a proper descendant of the lowest common
ancestor of y and z) is denoted by ({x, y}, z). A set T of rooted triplets is called dense if for each {x, y, z} ⊆ L, where
L is the set of all leaves occurring in T , at least one of ({x, y}, z), ({x, z}, y), and ({y, z}, x) belongs to T .

A phylogenetic network is a connected, rooted, simple, directed acyclic graph in which: (1) each node has outdegree
at most 2; (2) each node has indegree 1 or 2, except the root node which has indegree 0; (3) no node has both indegree 1
and outdegree 1; and (4) all nodes with outdegree 0 are labeled in such a way that no two nodes are assigned the same
label. From here on, nodes of outdegree 0 are referred to as leaves and identified with their corresponding elements
in L. We refer to nodes with indegree 2 as hybrid nodes.

For any phylogenetic network N, let U(N) be the undirected graph obtained from N by replacing each directed edge
by an undirected edge. N is called a level-f phylogenetic network if, for every biconnected component B in U(N), the
subgraph of N induced by the set of nodes in B contains at most f nodes with indegree 2. Note that if f = 0 then N
is a tree.

We denote the set of leaves in a rooted triplet t or a phylogenetic network N by �(t) or �(N), respectively. A rooted
triplet t is consistent with the phylogenetic network N if t is an embedded subtree of N. See Fig. 1 for an example. A
set T of rooted triplets is consistent with N if every ti ∈ T is consistent with N.

The problem we focus on in this paper is: given a set T = {t1, . . . , tk} of rooted triplets, construct a level-1
phylogenetic network N with �(N) = ⋃

ti∈T �(ti) such that T is consistent with N, if such a network exists;
otherwise, output null. Throughout this paper, we let L represent the leaf set

⋃
ti∈T �(ti) in the problem definition

above, and we write n = |L| and k = |T |. Note that if the input is dense then
(
n
3

)
� k � 3 · (

n
3

)
, i.e., k = �(n3).

Finally, for any set T of rooted triplets and L′ ⊆ L, we define T | L′ as the subset of T consisting of all rooted
triplets ({x, y}, z) with {x, y, z} ⊆ L′.

1 A similar approach is used in the quartet method paradigm [16,18] for reconstructing unrooted phylogenetic trees: first infer the unrooted
topology of each cardinality four subset of the leaf set to obtain a complete set of quartets (unrooted, distinctly leaf-labeled trees each having four
leaves and no nodes of degree two), then combine the quartets into an unrooted tree.
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1.2. Related work

Aho et al. [1] presented an O(kn)-time algorithm for determining whether a given set of k rooted triplets on n leaves
is consistent with some rooted, distinctly leaf-labeled tree (i.e., a level-0 phylogenetic network), and if so, returning
such a tree. Several years later, Henzinger et al. [12] showed how to implement the algorithm of Aho et al. to run in
min{O(kn0.5), O(k + n2 log n)} time. Ga̧sieniec et al. [8] considered a version of the problem where the leaves in the
output tree are required to comply with a left-to-right leaf ordering given as part of the input. Related optimization
problems where the objective is to construct a rooted tree consistent with the maximum number of rooted triplets in the
input or to find a maximum cardinality subset L′ of L such that T | L′ is consistent with some tree have been studied
in [3,8,9,14,24,15] and in Jansson [15], respectively.

The analog of the problem considered by Aho et al. for unrooted trees is NP-hard, even if all of the input trees are quar-
tets [22]. Fortunately, certain useful optimization problems involving quartets can be approximated efficiently [16,18].
For a survey on quartet-based methods for inferring unrooted phylogenetic trees and related computational complexity
results, see [18].

Nakhleh et al. [20] gave an algorithm for reconstructing a level-1 phylogenetic network from two distinctly leaf-
labeled, binary, rooted, unordered trees with identical leaf sets. It runs in time which is polynomial in the number of
leaves and the number of hybrid nodes in the underlying phylogenetic network. They also considered the case where
the two input trees may contain errors but where only one hybrid node is allowed.

We remark that the deterministic algorithm for dynamic graph connectivity employed in the algorithm of Henzinger
et al. [12] mentioned above can in fact be replaced with a more recent one due to Holm et al. [13] to yield the following
improvement.

Lemma 1 (Jansson et al. [15]). The algorithm of Aho et al. can be implemented to run in min{O(k log2 n), O(k +
n2 log n)} time.

1.3. Our results and organization of the paper

We observe that if no restriction is placed on the level of the phylogenetic network, then the problem can be trivially
solved using a sorting network-based construction in Section 2. Next, in Section 3, we present an O(n5)-time algorithm
called OneHybridLeaf for inferring the set of all phylogenetic networks with one hybrid node to which exactly one
leaf is attached that are consistent with a given dense set T of rooted triplets. This algorithm is subsequently used in
Section 4, where we give a more general algorithm called LevelOne for constructing a level-1 phylogenetic network
consistent with T (if one exists) in O(n6) time when T is dense. (Since k = |T | = �(n3) when T is dense, the
running times of OneHybridLeaf and LevelOne can also be expressed as O(k5/3) or O(|T |5/3), and O(k2) or O(|T |2),
respectively.)

2. Constructing an unrestricted phylogenetic network

Given any set T of rooted triplets with a leaf set L, we can always construct a level-f phylogenetic network N where
f is unrestricted such that N is consistent with T . Moreover, the construction can be carried out in time which is
polynomial in the size of T as follows. Let P be any sorting network (see, e.g., [7]) for n elements with a polynomial
number p of comparator stages. Build a directed acyclic graph Q from P with (p + 2) · n nodes {Qi,j | 0� i�p +
1, 1�j �n} such that there is a directed edge (Qi,j , Qi+1,j ) for every 0� i�p and 1�j �n, and two directed
edges (Qi,j , Qi+1,k) and (Qi,k, Qi+1,j ) for every comparator (j, k) at stage i in P for 1� i�p. Then, for 1�j �n−1,
add the directed edge (Q0,j , Q0,j+1). See Fig. 2. Finally, distinctly label the nodes {Qp+1,j | 1�j �n} by L, and for
each node in Q having indegree 1 and outdegree 1 (if any), contract its outgoing edge to obtain N.

Lemma 2. For any {x, y, z} ⊆ L, all three of ({x, y}, z), ({x, z}, y), and ({y, z}, x) are consistent with N.

Proof. Assume without loss of generality that L = {1, 2, . . . , n}. Since P is a sorting network, there are n disjoint
paths in Q from (Q0,�(1), Q0,�(2), . . . , Q0,�(n)) to (Qp+1,1, Qp+1,2, . . . , Qp+1,n) for any given permutation � of
{1, 2, . . . , n}; in particular, this holds for any permutation �x such that �x(x) = 1, �x(y) = 2, and �x(z) = 3. Therefore,
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Fig. 2. The sorting network P on the left yields a directed acyclic graph Q.

({y, z}, x) is an embedded subtree of N. The above argument can be repeated for any permutations �y and �z such that
�y(y) = 1, �y(x) = 2, �y(z) = 3 and �z(z) = 1, �z(x) = 2, �z(y) = 3, respectively, to show that ({x, z}, y) and
({x, y}, z) are also consistent with N. �

This yields:

Theorem 3. Given any set L of n leaf labels, a phylogenetic network consistent with all 3 · (
n
3

)
rooted triplets

whose leaf labels belong to L can be constructed in O(s(n)) time, where s(n) is the time required to construct a
sorting network for n elements.

By employing, e.g., an AKS sorting network (see [2]), we obtain s(n) = O(n log n) in Theorem 3.

3. Constructing all phylogenetic networks having one hybrid node with one attached leaf

This section presents an algorithm called OneHybridLeaf for inferring the set of all phylogenetic networks having
a single hybrid node attached to exactly one leaf (and having no other hybrid nodes) which are consistent with a given
set T of rooted triplets. This algorithm is later used as a subroutine by the main algorithm in Section 4. OneHybridLeaf
assumes that its given set T of rooted triplets is dense. We first note the following.

Lemma 4. Let T be a dense set of rooted triplets and let L be the leaf set of T . There is at most one rooted,
unordered tree distinctly leaf labeled by L which is consistent with T . Furthermore, if such a tree R exists then it
must be binary.

Proof. Suppose there exist two unordered, distinctly leaf-labeled trees R and R′ consistent with T such that R �= R′.
Then, for some x, y, z ∈ L, ({x, y}, z) is consistent with R while ({x, z}, y) is consistent with R′. Since T is dense,
at least one of ({x, y}, z), ({x, z}, y), and ({y, z}, x) belongs to T . This yields a contradiction in all cases because R
cannot be consistent with ({x, z}, y) or ({y, z}, x) and R′ cannot be consistent with ({x, y}, z) or ({y, z}, x) since R
and R′ are trees.

Next, suppose R is not binary. Then R has a node u with degree greater than two. Let x, y, and z be leaves from
three different subtrees rooted at children of u. T is dense, so at least one of ({x, y}, z), ({x, z}, y), and ({y, z}, x)

belongs to T . But none of these three rooted triplets is consistent with R. Contradiction. �
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Fig. 3. Constructing phylogenetic networks with one hybrid node.

Lemma 5. Let N be any phylogenetic network consistent with a set T of rooted triplets with leaf set L such that N
has a hybrid node h to which exactly one leaf c is attached and N has no other hybrid nodes. If h and c and all their
incident edges are deleted and then, for every node with outdegree 1 and indegree less than 2, its outgoing edge is
contracted, then the resulting graph is a binary tree consistent with T | (L \ {c}).

Our algorithm OneHybridLeaf is shown in Fig. 3. It tests every c ∈ L as the leaf attached to the hybrid node. For
each such candidate c, it first calls a procedure BuildTree to obtain a binary tree R which is consistent with all rooted
triplets in T that do not involve the leaf c, if such a tree exists. (T is dense, so the set T | (L \ {c}) is also dense. Thus,
Lemma 4 ensures that if R exists then it is uniquely determined and binary.) Then, it tries all possible ways to obtain a
phylogenetic network from R by inserting a hybrid node h attached to the leaf c, and keeps all resulting networks which
are also consistent with the rest of T . By Lemma 5, all valid phylogenetic networks will be found by OneHybridLeaf.

To implement the procedure BuildTree, we use the fast version of the algorithm of Aho et al. referred to in Lemma 1.
If L contains at least four elements then BuildTree(T | (L \ {c})) is the algorithm of Aho et al. applied to T | (L \ {c})
(we may assume it returns null if it fails). For the case |L| = 3, the set T | (L \ {c}) is empty and we simply let
BuildTree(T | (L \ {c})) return a tree with the two leaves in L \ {c}.
Lemma 6. The time complexity of Algorithm OneHybridLeaf is O(n5).

Proof. Step 2 iterates Steps 2.1–2.3 n times. In each iteration, Step 2.1takes O(k+n2 log n) time by Lemma 1. The inner
for-loop (Step 2.3) considers O(n2) pairs of nodes of R; for each such node pair, Step 2.3.1 takes O(1) time and Step
2.3.2 takes O(n2) time. In total, Step 2.3 uses O(n2 · (1 +n2)) = O(n4) time, so Step 2 takes O(n · (k +n2 log n+n4))

time. Furthermore, k = |T | = O(n3). Thus, the total running time of OneHybridLeaf is O(n5). �

4. Constructing a level-1 phylogenetic network

Here, we present an algorithm called LevelOne for inferring a level-1 phylogenetic network (if one exists) consistent
with a given dense set T of rooted triplets. The basic idea of our algorithm is to partition the leaf set L of T into disjoint
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Fig. 4. Computing SN({x, y}).

subsets which we call maximal SN-sets, run LevelOne recursively to construct a level-1 network for each such SN-set,
and then apply Algorithm OneHybridLeaf from Section 3 to combine the computed networks for the SN-sets into one
level-1 network.

We first introduce the concept of an SN-set. For any X ⊆ L, define the set SN(X) recursively as SN(X ∪ {c}) if
there exist some x1, x2 ∈ X and c ∈ L \ X such that ({x1, c}, x2) ∈ T , and as X otherwise. Intuitively, each SN-set is
a subset of L which will form the leaf set of a subnetwork of the final solution; hence the name “SN-set”. Below, we
study some properties of the SN-sets.

Lemma 7. SN({x, y}) for any x, y ∈ L is computable in O(n3)time.

Proof. If x = y then SN({x, y}) = {x} can be obtained in O(1) time. If x �= y then SN({x, y}) can be computed
by Algorithm ComputeSN(x, y) shown in Fig. 4. Initially, the algorithm sets X = {x} and Z = {y}. Then, while
Z is nonempty, it selects any z ∈ Z, augments Z with all leaves c not already in X ∪ Z such that ({a, c}, z) or
({z, c}, a) ∈ T for some a ∈ X, and finally removes z from Z and inserts z into X. To analyze the time complexity
of Algorithm ComputeSN, observe that one leaf is transferred from Z to X in each iteration of the while-loop and that
a leaf which has been moved to X can never be moved back to Z, so Steps 2.1–2.3 are iterated at most n − 1 times.
Inside the while-loop, the algorithm scans O(n2) rooted triplets at most once to augment Z. The total running time of

ComputeSN is therefore O(n3). �

Note that Lemma 7 holds even if T is not dense. However, if T is dense then the SN-sets have the following very
important property.

Lemma 8. If T is dense then for any A, B ⊆ L, SN(A) ∩ SN(B) equals ∅, SN(A), or SN(B).

Proof. Suppose on the contrary that z1, z2 ∈ SN(A), z2, z3 ∈ SN(B), z3 �∈ SN(A), and z1 �∈ SN(B). Consider the
rooted triplet on z1, z2, and z3. Since T is dense, at least one of the following three cases must occur:
• Case 1: ({z2, z3}, z1) ∈ T . Then, by definition, z3 ∈ SN(A).
• Case 2: ({z1, z3}, z2) ∈ T . Then, by definition, z3 ∈ SN(A).
• Case 3: ({z1, z2}, z3) ∈ T . Then, by definition, z1 ∈ SN(B).
In each of the three cases, we have a contradiction. Thus, the lemma follows. �

In particular, Lemma 8 holds for all subsets of L of cardinality one or two.
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Fig. 5. Illustrating the correspondence between T and T ′. Each set SN i ∈ SN in a level-1 phylogenetic network consistent with T corresponds to
a leaf �i in a phylogenetic network consistent with T ′ having at most one hybrid node (see the proof of Lemma 9), and vice versa (see Lemma 10).

From here on, we assume T is dense. For any x1, x2 ∈ L (possibly with x1 = x2), SN({x1, x2}) is called trivial
if SN({x1, x2}) = L, and SN({x1, x2}) is called maximal if it is nontrivial and not a proper subset of any nontrivial
SN({y1, y2}), where y1, y2 ∈ L. Let SN be the set of all maximal SN-sets of the form SN({x1, x2}), where possibly
x1 = x2. Since T is dense, SN forms a partition of the set L by Lemma 8.Furthermore, SN is uniquely determined.
Write SN = {SN1, SN2, . . . , SNq} and introduce q new symbols �1, �2, . . . , �q . (Observe that q �2 if |L|�2.) We
define a function f as follows. For every x ∈ L, let f (x) = �i if x ∈ SN i . Let T ′ be the set

{
({f (x), f (y)}, f (z)) :

({x, y}, z) ∈ T and f (x), f (y), f (z) all differ
}
.

The next two lemmas imply that T is consistent with a level-1 phylogenetic network if and only if T ′ is consistent
with a phylogenetic network with at most one hybrid node. See Fig. 5.

Lemma 9. Suppose T is consistent with a level-1 phylogenetic network. If q = 2 then the tree distinctly leaf labeled by
�1 and �2 is consistent with T ′. If q �3 then there exists a phylogenetic network having a single hybrid node attached
to exactly one leaf (and having no other hybrid nodes) that is consistent with T ′.

Proof. If q = 2 then T ′ is empty, and so the tree distinctly leaf labeled by �1 and �2 is always consistent with T ′.
Below, we consider the case q �3.

Let M be any level-1 phylogenetic network with leaf set L that is consistent with T . First, observe that there must exist
two paths p1 and p2 from the two children of the root r to a hybrid node in M. (To see this, suppose the opposite holds
and let A and B be the disjoint sets of leaves in the two subnetworks rooted at the children of r. For each SN i ∈ SN ,
either SN i ⊆ A or SN i ⊆ B because T is dense and because SN i is nontrivial. Since q �3, there exist i, j, k where
i, j, k differ such that both SN i and SNj are subsets of one of A and B, and SNk is a subset of the other. Both SN i

and SNj are proper subsets of SN({x, y}) for any x ∈ SN i and y ∈ SNj by Lemma 8. However, SN({x, y}) contains
no leaves from SNk and is therefore nontrivial. This implies that SN i and SNj are not maximal, which gives us a
contradiction.)

For any node u in M, denote the subnetwork of M rooted at u by M[u]. If u is not located on p1 or p2 but a parent
of u is, then u is called a side node in M. If u is a side node then u has only one parent, which we denote by P(u). For
each side node u in M, it holds that M[u] can contain leaves from one SN i ∈ SN only (if M[u] contains two leaves
x ∈ SN i and y ∈ SNj where i �= j then SN i � SN({x, y}) and SNj � SN({x, y}) by Lemma 8, and moreover, since u
is a side node, we have SN({x, y}) �= L and thus SN i and SNj are not maximal, which is a contradiction). Next, note
that if M[u] and M[v] for two side nodes u, v in M contain leaves from the same SN i ∈ SN then P(u) and P(v) must
both belong to p1 or both belong to p2 (otherwise, SN i = L, which is impossible). Furthermore, for every side node w
such that P(w) lies on the path between P(u) and P(v), the leaves in M[w] must also belong to the same SN i . This
means that the parents of all side nodes in M that have descendant leaves from the same SN i ∈ SN are consecutively
ordered along either p1 or p2. For each SN i ∈ SN , we can therefore concatenate all subnetworks that are rooted
at a side node in M and whose leaves belong to SN i to obtain a phylogenetic network M∗ consistent with T such
that each subnetwork M∗

i rooted at a side node in M∗ is bijectively leaf labeled by one SN i ∈ SN . Finally, by
replacing each such M∗

i with a leaf labeled by �i , we obtain a phylogenetic network consistent with T ′ having
one hybrid node. �
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Fig. 6. Constructing a level-1 phylogenetic network.

Lemma 10. Suppose T ′ is consistent with a level-1 phylogenetic network N ′ with leaf set {�1, . . . , �q}. Let N be a
level-1 network obtained from N ′ by replacing each �i by a level-1 network Ni with leaf set SN i consistent with T | SN i .
Then N is consistent with T .

Proof. Let t be any rooted triplet in T and write t = ({x, y}, z). If x ∈ SN i , y ∈ SNj , and z ∈ SNk , where i, j, k all
differ, then t is consistent with N (otherwise, t ′ = ({f (x), f (y)}, f (z)) = ({�i , �j }, �k) cannot be consistent with N ′
which is a contradiction since t ′ ∈ T ′). If x, y ∈ SN i and z ∈ SNj with i �= j then t is consistent with N by the
construction of N. The case x, z ∈ SN i and y ∈ SNj (or symmetrically, y, z ∈ SN i and x ∈ SNj ) with i �= j is not
possible since x, z ∈ SN i would imply y ∈ SN i . If x, y, z belong to the same SN i then t is consistent with Ni and
therefore with N. In all cases, t is consistent with N. �

Our main algorithm LevelOne is listed in Fig. 6. Its correctness follows from Lemmas 9 and 10.

Theorem 11. When T is dense, we can determine if there exists a level-1 phylogenetic network consistent with T , and
if so construct one, in O(n6) time.

Proof. Apply Algorithm LevelOne to T . For any L′ ⊆ L, let g(L′) be the running time of LevelOne(T | L′). In Step 1

of the algorithm, we compute SN({x1, x2}) for the n2 pairs (x1, x2) in L × L. By Lemma 7, Step 1 takes O(n5) time.
Step 2can be performed in O(n3) time, and Step 3takes

∑
SN i∈SN g(SN i ) time. Step 5can be done in O(n5) time

according to Lemma 6. In total, we have g(L) = ∑
SN i∈SN g(SN i ) + O(n5). Since all sets in SN are disjoint,

g(L) = O(n6). �

Algorithm LevelOne can be modified to return all level-1 phylogenetic networks consistent with T by utilizing all
the possible topologies returned by OneHybridLeaf. However, the running time may then become exponential since
some inputs are consistent with an exponential number of different level-1 networks. (At each recursion level, although
the partition of the leaves into SN is unique when the input is dense, there may be more than one way to merge the
recursively computed subnetworks for the SN-sets into a valid network.)
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5. Concluding remarks

This paper presents a polynomial-time algorithm for inferring a level-1 phylogenetic network from a dense set of
rooted triplets. In the future, we plan to further improve the time complexity of our main algorithm and to investigate
the computational complexity of the problem when T is not dense. Also, we would like to know if it is possible
to construct a level-f phylogenetic network from a dense set of rooted triplets in polynomial time for any constant
f > 1. Finally, since a set of rooted triplets based on experimental data might not be consistent with any level-1
phylogenetic network, it would be interesting to consider the optimization version of the problem where the objective
is to construct a level-1 phylogenetic network consistent with as many rooted triplets from T as possible (for the rooted
tree case, this maximization problem was studied in [3,8,9,14,24]; see also [15]).

Note added in proof

The results presented in this article have recently been extended and strengthened in [25].
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