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Abstract. We consider the problem of computing an optimal local align-
ment of two labeled ordered forests F1 and F2 where ni and di, for
i ∈ {1, 2}, denote the number of nodes in Fi and the degree of Fi, re-
spectively; and its applications in finding RNA structural motifs. A pre-
vious result is the local closed subforest alignment problem, which can
be solved in O(n1n2d1d2(d1 + d2)) time and O(n1n2d1d2) space. This
paper generalizes the concept of a closed subforest to a gapped subforest
and then presents an algorithm for computing the optimal local gapped
subforest alignment of F1 and F2 in O(n1n2d1d2(d1 + d2)) time and
O(n1n2d1d2) space. We show that our technique can improve the com-
putation of the optimal local closed subforest alignment in O(n1n2(d1 +
d2)2) time and O(n1n2(d1 + d2)) space. Furthermore, we prove that a
special case of our local gapped subforest alignment problem is equiva-
lent to a problem known in the literature as the local sequence-structure
alignment problem (lssa). The previously best algorithm for lssa uses
O(n2

1n
2
2(n1 +n2)) time and O(n1n2) space; here, we show how to modify

our main algorithm to obtain an algorithm for lssa running in
O(n1n2(d1 + d2)2) time and O(n1n2(d1 + d2)) space.

1 Introduction

Many areas of computer science use labeled ordered trees to represent hierarchi-
cally structured information. It is often useful to measure the similarity between
two or more such trees or to find parts of the trees that are similar. In computa-
tional molecular biology, labeled ordered trees are used to represent RNA molecules’
secondary structures [14]. By measuring and comparing the similarity of secondary
structure trees, researchers who investigate structural or evolutionary relation-
ships between RNA molecules may obtain additional clues [4]. Furthermore, com-
paring RNAs lead to automated methods for discovering frequently recurring pat-
terns in their secondary structures (also known as motifs) which are helpful when
investigating the various functions in the cell of different types of RNA [8] or when
predicting the secondary structure of a newly found RNA molecule.

Two ways to measure the similarity between two labeled ordered trees are
by using the tree edit distance [15] or alignments of trees [11]. The problem
of computing the optimal alignment of two trees can be viewed as a special
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case of the tree edit distance problem [11]; indeed, the fastest known algorithms
for optimal alignment between two trees have lower time complexities than the
fastest known algorithms for the tree edit distance, both for unordered trees
whose degrees are bounded by a constant [11, 19] and for ordered trees whose
degrees are much smaller than their depths [11, 20].

Alignments between trees as defined in [11] consider similarities on global level
only, in the sense that every node in the input trees must be paired off with either
a node in the other tree or a space. [8] and [16] extended the concept of a global
alignment of trees to a local alignment of trees by introducing problems in which
the objective is to find two substructures of the input having the highest possible
similarity, where the similarity between two substructures is defined using the
maximum score of a global alignment between them.

In this paper, we improve the time and space complexities of the main al-
gorithm presented in [8]. Moreover, we further extend the set of mathematical
definitions and notations for local similarity in labeled forests by generalizing
the concept of a closed subforest used in [8] to what we call a gapped subforest.
Based on this new concept, we define a computational problem called the local
gapped subforest alignment problem (lgsf) that can express even more general
patterns of local similarities in two labeled ordered forests than the problem
considered in [8], and give an efficient algorithm for solving it. Finally, we prove
that a special case of lgsf referred to as lgsfβ is in fact equivalent to the local
sequence-structure alignment problem (lssa) presented in [2], implying that a
slightly modified version of our algorithm for lgsf can be applied to solve lssa
much faster than the algorithm given in [2].

1.1 Problem Definitions

We first introduce some terminologies and notations used in this paper.
Let Σ be a set of symbols, the alphabet. A rooted ordered forest whose nodes

are labeled by symbols in Σ is called a Σ-labeled forest (in short, forest). For
any two nodes u and v in F , u and v are called siblings if and only if they have
the same parents or both of them are roots of some trees in F . For any node
u in F , let e(u) be the rightmost sibling of u; let l(u) and r(u) be the sibling
immediately to the left and to the right of u, respectively. uL and uR denote
the leftmost and the rightmost children of u respectively. Given two siblings u
and v, define u..v as a sibling interval, i.e., the set of siblings which are to the
right of u and to the left of v. If u and v are not siblings or if u is a right sibling
of v, u..v is an empty interval. Let S(F ) be the set of all sibling intervals of F .
Note that the number of sibling intervals in S(F ) is O(|F |deg(F )) since, for each
node u, there are at most deg(F ) sibling intervals u..v. Let F [u..v] be the forest
consisting of the subtrees rooted at the nodes in u..v.

Definition 1 (Closed Subforest). Let F and F ′ be two Σ-labeled forests. F ′

is called a closed subforest of F if and only if F ′ = F [u..v] for some siblings u, v
in F . (see Fig. 1.)
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Fig. 1. (a) is an example of tree/forest F ; (b) shows the closed subforest F [u3..u4]; (c)
shows a gapped subforest at F [u1..u1]. This gapped subforest is formed by excluding
the closed subforests F [u3..u3], F [u9..u9], F [u15..u15], and F [u18..u19]. The forest in
(b) is an α-gapped subforest at F [u3..u5] since it only excludes F [u5..u5]. Also, (b) and
(c) are β-gapped subforests at F [u3..u4] and F [u1..u1], respectively

Definition 2 (Gapped Subforest). Let F and F ′ be two Σ-labeled forests. F ′

is called a gapped subforest of F if and only if there exists a sibling interval u..v
and k sibling intervals xi..yi, for i = 1, 2, . . . , k, whose parents are pi such that
pi �= pj for all i, j; and the forest F ′ can be formed from F by excluding all k
closed subforests F [xi..yi] from F [u..v]. F ′ is called a gapped subforest at F [u..v].
We denote gsf(F [u..v]) or gsf∗(F [u..v]) as the set of all gapped subforests at
F [u..v].

F ′ is called an α-gapped subforest at F [u..v] if and only if we will not exclude
any closed subforest F [x..y] where x = u. We denote gsfα(F [u..v]) as the set of
all α-gapped subforests at F [u..v].

F ′ is called a β-gapped subforest at F [u..v] if and only if we will not exclude
any closed subforest F [x..y] where x..y ⊆ u..v. We denote gsfβ(F [u..v]) as the
set of all β-gapped subforests at F [u..v]. (see Fig. 1.)

Lemma 1. gsf(F [u..u′]) = gsfα(F [u..u′])
⋃

(∪u′′∈u..u′gsfβ [u′′..u′]))

Given two Σ-labeled forests F and G, one way to measure their similarity is to
compute their optimal global alignment score. The definition of global alignment
of forests follows Jiang et al. [11]. Basically, a global alignment A of F and G is
obtained by first inserting nodes labeled with spaces ‘-’ into F and G such that
the two resulting ordered forests F ′ and G′ have the same structure, and then
overlaying them. Here is the formal definition of the global alignment.

Definition 3 (Global Forest Alignment). [8] Let F , G be two Σ-labeled
forests. A (Σ ∪ {−})2-labeled forest A is called a global alignment of F and G
if and only if F = π(A1) and G = π(A2), where A1 and A2 are left and right
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projections of A and π(Ai) is a forest formed by successive deleting nodes labeled
with ‘-’ from Ai for i = 1, 2.

For every pair of labels (u, v) ∈ (Σ ∪ {−})2, we define a score σ(u, v). The
score of an alignment A is the sum of the scores of all pairs in the nodes of
A, that is, Σ(u,v)∈Aσ(u, v). The similarity sim(F, G) of F and G is the score of
optimal global alignment of F and G.

The local forest alignment problems focus on finding two local subforests
of orginal forests such that they have optimal global alignment score. Here we
define three problems of local forest alignment.

The Local Gapped Subforest Alignment Problem is to find two gapped sub-
forests F ′ and G′ of F and G, respectively, such that the global alignment score
sim(F ′, G′) is maximized.

lgsf(F, G) = max{sim(F ′, G′) | F ′ ∈ gsf(F ), G′ ∈ gsf(G)}
The Local β-Gapped Subforest Alignment Problem is to find two β-gapped

subforests F ′ and G′ of F and G, respectively, maximizing the global alignment
score sim(F ′, G′).

lgsfβ(F, G) = max{sim(F ′, G′) | F ′ ∈ gsfβ(F ), G′ ∈ gsfβ(G)}
The Local Closed Subforest Alignment Problem is to find two closed sub-

forests F ′ and G′ of F and G, respectively, such that the global alignment score
sim(F ′, G′) is maximized.

lcsf(F, G) = max{sim(F [u..u′], G[v..v′]) | u..u′ ∈ S(F ), v..v′ ∈ S(G)}

1.2 Previous Results

RNAs can be modeled as annotated sequences [5] or labeled ordered trees. For
comparing annotated sequences, a number of results have been done on global
edit distance and global alignment [1, 3, 5, 6, 7, 10, 12, 13]. The only known local
alignment result is given in [2].

This paper focuses on labeled ordered trees comparison. For global tree edit
distance, results include [15, 19, 20]. The first algorithm for global alignment of
labeled ordered trees was proposed by Jiang, Wang, and Zhang [11]. Their al-
gorithm computes the optimal global alignment between two labeled ordered
trees T1 and T2 in O(|T1| · |T2| · (deg(T1) + deg(T2))2) time, where |Ti| and
deg(Ti) for i ∈ {1, 2} denote the number of nodes in Ti and the degree of Ti,
respectively. It was extended without affecting the asymptotic running time to
the problem of optimally aligning two labeled ordered trees with gap penalties
by Wang and Zhao [17]. In [17], Wang and Zhao also showed how to reduce the
space complexity of the resulting algorithm from O(|T1|·|T2|·(deg(T1)+deg(T2)))
to O(log(|T1|) · |T2| · (deg(T1) + deg(T2)) · deg(T1)) at the expense of increasing
the running time to O(|T1|2 · |T2| · (deg(T1) + deg(T2))2). A modification to the
algorithm of Jiang et al. which yields a lower running time for similar trees was
given in [9].
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As for computing local alignments of labeled ordered trees, Höchsmann et
al. [8] gave an algorithm for lcsf (they termed it as the local closed subforest
similarity problem). Backofen and Will [2] studied a problem that are called the
local sequence-structure alignment problem (this problem is equivalent to our
lgsfβ , as we prove in Section 4). The following table summarizes the complexities
of the previously most efficient algorithms for lcsf , lgsf , and lgsfβ .

Problem Time complexity Space complexity

lcsf O
(|F | · |G| · deg(F ) · deg(G)· O

(|F | · |G| · deg(F ) · deg(G)
)

(See [8]) (deg(F ) + deg(G))
)

lgsf Not studied before Not studied before
lgsfβ O

(|F |2 · |G|2 · (|F | + |G|)) O
(|F | · |G|)

(See [2])

1.3 Our Results and Organization of the Paper

In Section 2, we introduce some additional notations and derive a number of
recursive formulas which form the basis of our main dynamic programming-
based algorithm for solving lgsf , presented in Section 2.4. Next, in Sections 3.1
and 3.2 we refine our algorithm for lgsf to solve lgsfβ and lcsf even more
efficiently. In Section 4, we prove that lgsfβ is equivalent to the local sequence-
structure problem considered in [2] and describe practical applications of lgsf
related to finding structural motifs in RNA molecules. Finally, in Section 5, we
discuss possible future extensions of our work.

The table below summarizes the complexities of our algorithms.

Problem Time complexity Space complexity

lcsf O
(|F | · |G|· O

(|F | · |G| · (deg(F ) + deg(G))
)

(Section 3.2) (deg(F ) + deg(G))2
)

lgsf O
(|F | · |G| · deg(F ) · deg(G)· O

(|F | · |G| · deg(F ) · deg(G)
)

(Section 2.4) (deg(F ) + deg(G))
)

lgsfβ O
(|F | · |G|· O

(|F | · |G| · (deg(F ) + deg(G))
)

(Section 3.1) (deg(F ) + deg(G))2
)

2 The Local Gapped Subforest Alignment Problem

This section presents an algorithm to solve lgsf . To compute the similarity of two
forests F and G through alignment, we consider the search space in a structurally
recursive fashion. The following lemma acts as the base for our algorithm.

2.1 Base Lemma

Lemma 2. [8] Let A be an alignment of two Σ-labeled forests F, G. If F or G is
empty then the alignment A is an empty forest. If F and G are both non-empty
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forests where u and v are the roots of the leftmost trees of F and G, respectively,
then the root a of the leftmost tree of A equals one of the following: (u, v), (u, −)
and (−, v). We have three cases:

1. If a = (u, v) then A[aL..aR] is an alignment of F [uL..uR] and G[uL..uR],
and A[r(a)..e(a)] is an alignment of F [r(u)..e(u)] and G[r(v)..e(v)].

2. If a = (u, −) then for some v′′ ∈ l(v)..e(v), A[aL..aR] is an alignment of
F [uL..uR] and G[v..v′′], and A[r(a)..e(a)] is an alignment of F [r(u)..e(u)]
and G[r(v′′)..e(v)].

3. If a = (−, v) then for some u′′ ∈ l(u)..e(u), A[aL..aR] is an alignment of
F [u..u′′] and G[vL..vR], and A[r(a)..e(a)] is an alignment of F [r(u′′)..u′]
and G[r(v)..e(v)].

2.2 Matrix Notations

From Lemma 1, we know that a gapped subforest at F [u..u′] can either be an
α-gapped subforest at F [u..u′] or a β-gapped subforest at F [u′′..u′], depending
on its excluded interval in u..u′. Thus, given two Σ-labeled forests F and G,
to find lgsf(F, G), our algorithm computes 9 dynamic programming matrices
depending on the types of the gapped subforests. For every a, b ∈ {α, β, ∗}, we
define the matrix Da−b as follows:

Definition 4 (Matrix). For every a, b ∈ {α, β, ∗}, for every u..u′ ∈ S(F )
and v..v′ ∈ S(G), Da−b[u..u′; v..v′] is defined to be the maximum of all the
global alignment scores of two forests F ′ and G′, where F ′ ∈ gsfa(F [u..u′]) and
G′ ∈ gsfb(G[v..v′]). Precisely, we have

Da−b[u..u′; v..v′] = max{sim(F ′, G′)|F ′ ∈ gsfa(F [u..u′]), G′ ∈ gsfb(G[v..v′])}

2.3 Recursive Formulae

Given the above matrices, the local gapped subforest alignment score and the
local β-gapped subforest alignment score of two forests F and G can be computed
based on the following lemma.

Lemma 3. Let F, G be two Σ-labeled forests. Then, we have:

lgsf(F, G) = max{D∗−∗[u..u′; v..v′] | u..u′ ∈ S(F ), v..v′ ∈ S(G)}
lgsfβ(F, G) = max{Dβ−β [u..u′; v..v′] | u..u′ ∈ S(F ), v..v′ ∈ S(G)}.

The next step is to derive recursive formulae. First, the general matrix D∗−∗
is computed using the following lemma. The proof follows directly from Defini-
tions 2 and 4 and together with Lemma 1, and is therefore omitted.

Lemma 4 (General Matrix).

D∗−∗[u..u′; v..v′] = max

⎧
⎪⎪⎨

⎪⎪⎩

Dα−α[u..u′; v..v′]
max

v′′∈v..r(v′)
{D∗−β [u..u′; v′′..v′]}

max
u′′∈u..r(u′)

{Dβ−∗[u′′..u′; v..v′]}
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Also from Definitions 2 and 4 and Lemma 1, we can straightforwardly derive
the formulae to compute the matrices Dα−∗, D∗−α, Dβ−∗, D∗−β as follows:

Lemma 5 (Special Matrices). The recursive equations for Dα−∗, D∗−α, Dβ−∗,
and D∗−β are:
– Dα−∗[u..u′; v..v′] = max

{
Dα−α[u..u′; v..v′], max

v′′∈v..r(v′)
{Dα−β [u..u′; v′′..v′]}}

– D∗−α[u..u′; v..v′] = max
{
Dα−α[u..u′; v..v′], max

u′′∈u..r(u′)
{Dβ−α[u′′..u′; v..v′]}}

– Dβ−∗[u..u′; v..v′] = max
{
Dβ−α[u..u′; v..v′], max

v′′∈v..r(v′)
{Dβ−β [u..u′; v′′..v′]}}

– D∗−β [u..u′; v..v′] = max
{
Dα−β [u..u′; v..v′], max

u′′∈u..r(u′)
{Dβ−β [u′′..u′; v..v′]}}

Now we proceed to the computations of Dα−α, Dα−β , and Dβ−α. Because
these formulae are more complicated, we provide a sketch of the proof.

Lemma 6 (Alpha-Alpha Matrix). Dα−α[u..u′; v..v′] =

max

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ(u, v) + D∗−∗[uL..uR; vL..vR] + D∗−∗[r(u)..u′; r(v)..v′]
σ(u, −) + max

v′′∈l(v)..v′
{D∗−β [uL..uR; v..v′′] + D∗−∗[r(u)..u′; r(v′′)..v′]}

σ(u, −) + max
v′′∈l(v)..v′

{D∗−α[uL..uR; v..v′′] + D∗−β [r(u)..u′; r(v′′)..v′]}
σ(−, v) + max

u′′∈l(u)..u′
{Dβ−∗[u..u′′; vL..vR] + D∗−∗[r(u′′)..u′; r(v)..v′]}

σ(−, v) + max
u′′∈l(u)..u′

{Dα−∗[u..u′′; vL..vR] + Dβ−∗[r(u′′)..u′; r(v)..v′]}

Proof. Let F ′ and G′ be two α-gapped subforests at F [u..u′] and G[v..v′] such
that their optimal global alignment A is optimal among those in gsfα(F [u..u′])
and gsfα(G[v..v′]). Let u∗, v∗, and a be the roots of the leftmost subtrees of F ′,
G′, and A respectively (i.e., u∗ = u and v∗ = v, but when we refer to u∗ and v∗

we mean the roots in F ′ and G′). From Lemma 2, we consider 3 cases:

– Case 1: When a = (u∗, v∗), by Lemma 2, F ′[u∗
L..u∗

R] is aligned with G′[v∗
L..v∗

R],
and F ′[r(u∗)..e(u∗)] is aligned with G′[r(v∗)..e(v∗)].
Since F ′ is an α-gapped subforest at F [u..u′], F ′[u∗

L..u∗
R] and F ′[r(u∗)..e(u∗)]

are gapped subforests at F [uL..uR] and F [r(u)..u′] respectively. Similarly,
G′[v∗

L..v∗
R] and G′[r(v∗)..e(v∗)] are gapped subforests at G[vL..vR] and

G[r(v)..v′] respectively. Hence, the alignment score of A equals σ(u, v) +
A[uL..uR; vL..vR] + A[r(u)..u′; r(v)..v′].

– Case 2: When a = (u∗,−), by Lemma 2, there exists some v′′ ∈ l(v∗)..e(v∗)
such that F ′[u∗

L..u∗
R] is aligned with G′[v∗..v′′], and F ′[r(u∗)..e(u∗)] is aligned

with G′[r(v′′)..e(v∗)].
Since F ′ is an α-gapped subforest at F [u..u′], F ′[u∗

L..u∗
R] and F ′[r(u∗)..e(u∗)]

are gapped subforests at F [uL..uR] and F [r(u)..u′] respectively.
Besides, by definition, since G′ is an α-gapped subforest of G[v..v′], G′ allows
exclusion of G[x..y] from G[v..v′] for at most one sibling interval x..y ⊆ v..v′.
Depending on whether or not x..y ⊆ v..v′′, we have two subcases.

• Case 2a: x..y ⊆ v..v′′. Then G′[v∗..v′′] is a β-gapped subforest at G[v..v′′],
and G′[r(v′′)..e(v∗)] is a gapped subforest at G[r(v′′)..v′]. Hence, the
alignment score of A equals σ(u, −)+maxv′′∈l(v)..v′{A∗−β [uL..uR; v..v′′]+
A[r(u)..u′; r(v′′)..v′]}.
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• Case 2b: x..y �⊆ v..v′′. Then G′[v∗..v′′] is an α-gapped subforest at
G[v..v′′], and G′[r(v′′)..e(v∗)] is a β-gapped subforest at G[r(v′′)..v′].
Hence, the alignment score of A equals σ(u, −) + maxv′′∈l(v)..v′{A∗−α

[uL..uR; v..v′′] + A∗−β [r(u)..u′; r(v′′)..v′]}.
– Case 3: When a = (−, v), the proof is symmetric to the proof for Case 2.

From the above three cases, Lemma 6 thus follows. ��
In the same way as in the proof of Lemma 6, we can derive Lemmas 7 and 8

below for computing Dα−β [u..u′, v..v′], Dβ−α[u..u′, v..v′], and Dβ−β [u..u′, v..v′].

Lemma 7 (Alpha-Beta matrix). Dα−β [u..u′; v..v′] =

max

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ(u, v) + D∗−∗[uL..uR; vL..vR] + D∗−β [r(u)..u′; r(v)..v′]
σ(u, −) + max

v′′∈l(v)..v′
{D∗−β [uL..uR; v..v′′] + D∗−β [r(u)..u′; r(v′′)..v′]}

σ(−, v) + max
u′′∈l(u)..u′

{Dβ−∗[u..u′′; vL..vR] + D∗−β [r(u′′)..u′; r(v)..v′]}
σ(−, v) + max

u′′∈l(u)..u′
{Dα−∗[u..u′′; vL..vR] + Dβ−β [r(u′′)..u′; r(v)..v′]}

and analogously for Dβ−α[u..u′; v..v′].

Lemma 8 (Beta-Beta matrix). Dβ−β [u..u′; v..v′] =

max

⎧
⎪⎪⎨

⎪⎪⎩

σ(u, v) + D∗−∗[uL..uR; vL..vR] + Dβ−β [r(u)..u′; r(v)..v′]
σ(u, −) + max

v′′∈l(v)..v′
{D∗−β [uL..uR; v..v′′] + Dβ−β [r(u)..u′; r(v′′)..v′]}

σ(−, v) + max
u′′∈l(u)..u′

{Dβ−∗[u..u′′; vL..vR] + Dβ−β [r(u′′)..u′; r(v)..v′]}

2.4 The Main Algorithm and Its Complexity

From the recursive formulae, we can derive the algorithm to compute lgsf(F, G)
straightforwardly. Basically, the algorithm computes Da−b[u..u′; v..v′] for all
a, b ∈ {α, β, ∗}, u..u′ ∈ S(F ), and v..v′ ∈ S(G). With the 9 matrices Da−b

for a, b ∈ {∗, α, β}, the optimal alignment can be easily found using a simple
traceback. The complexity will remain the same. The lemma below states its
time and space complexity.

Lemma 9. The algorithm Compute-lgsf runs in O(|F ||G|deg(F )deg(G)
(deg(F ) + deg(G))) time and O(|F ||G|deg(F )deg(G)) space.

3 Algorithms for Two Variants of the Local Gapped
Subforest Alignment Problem

3.1 Local β-Gapped Subforest Alignment Problem

To improve the efficiency of the algorithm for the Local β-Gapped Subforest
Alignment Problem, we construct a new matrix B[u, v] as follows:

B[u; v] = max{Dβ−β [u..u′; v..v′] | u..u′ ∈ S(F ), v..v′ ∈ S(G)}
From the definitions of Dβ−β [u..u′; v..v′] and of matrix B, we have:
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Lemma 10. B[u; v] = max{sim(F ′, G′) | F ′ ∈ gsfβ [u..u′], G′ ∈ gsfβ [v..v′]}.
Together with Lemma 3, we also have:

Lemma 11. lgsfβ(F, G) = max{B[u; v] | u ∈ F, v ∈ G}.
The computation of the matrix B is formulated as:

Lemma 12. B[u; v] =

max

⎧
⎪⎪⎨

⎪⎪⎩

σ(u, v) + D∗−∗[uL..uR; vL..vR] + max{B[r(u); r(v)], 0}
σ(u, −) + max

v′′∈l(v)..v′
{D∗−β [uL..uR; v..v′′] + max{B[r(u); r(v′′)], 0}}

σ(−, v) + max
u′′∈l(u)..u′

{Dβ−∗[u..u′′; vL..vR] + max{B[r(u′′); r(v)], 0}}

To compute lgsfβ(F, G), we need to compute all the entries in B[u, v]. In
this situation, we observe that it is unnecessary to compute all of the entries in
Da−b[u..u′; v..v′] for all a, b ∈ {α, β, ∗}, u..u′ ∈ S(F ) and v..v′ ∈ S(G). We just
need to fill in, for all a, b ∈ {α, β, ∗}, the entries of the form Da−b[u..u′; v..v′]
where u′ = e(u) or v′ = e(v). Thus, for all a, b ∈ {α, β, ∗}, each matrix
Da−b[u..u′; v..v′] is divided into two sub-matrices: D′

a−b[u; v..v′] and
D′′

a−b[u..u′; v], where D′
a−b[u; v..v′] = Da−b[u..e(u); v..v′] and D′′

a−b[u..u′; v] =
Da−b[u..u′; v..e(v)].

Lemma 13. The Local β-Gapped Subforest Alignment Problem can be solved
in O(|F ||G|(deg(F ) + deg(G))2) time and O(|F ||G|(deg(F ) + deg(G))) space.

3.2 Local Closed Subforest Alignment Problem

The Local Closed Subforest Alignment Problem has been proposed and solved by
[8] in O(|F ||G|deg(F )deg(G)(deg(F )+deg(G))) time and O(|F ||G|deg(F )deg(G))
space. We propose a faster and more space-saving algorithm for this problem.
Using the same technique as in Section 3.1, we construct a new matrix B[u..v]:

B[u; v] = max{sim(F [u..u′], G[v..v′]) | u..u′ ∈ S(F ), v..v′ ∈ S(G)}
Therefore, we have the following lemma:

Lemma 14. csf(F, G) = max{B[u; v] | u ∈ F, v ∈ G}
The computation of the matrix B is formulated as following:

Lemma 15. B[u; v] =

max

⎧
⎪⎪⎨

⎪⎪⎩

σ(u, v) + GD[uL..uR; vL..vR] + max{B[r(u); r(v)], 0}
σ(u, −) + max

v′′∈l(v)..v′
{GD[uL..uR; v..v′′] + max{B[r(u); r(v′′)], 0}}

σ(−, v) + max
u′′∈l(u)..u′

{GD[u..u′′; vL..vR] + max{B[r(u′′); r(v)], 0}}

where GD[u..u′; v..v′] is the optimal global alignment score of two closed sub-
forests F [u..u′] and G[v..v′]. But we just need to fill in the entries GD[u..u′; v..v′]
where either u′ = e(u) or v′ = e(v). These entries in the GD[u..u′; v..v′] matrix-
can be computed by [11] in O(|F ||G|(deg(F ) + deg(G))2) time. Therefore we
have the following analysis:
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Lemma 16. The Local Closed Subforest Alignment Problem can be solved in
O(|F ||G|(deg(F ) + deg(G))2) time and O(|F ||G|(deg(F ) + deg(G))) space.

4 An Application to Find Local RNA Sequence-Structure
Motifs

An RNA secondary structure is a combination of an RNA sequence and a set of
base pairings called arcs binded together by hydrogen bonds. An RNA secondary
structure can be represented as an annotated sequence [1, 5, 6, 7, 10, 13], which is
a tuple (S, P ) where S is a sequence of bases s1s2 . . . sn and P is a set of arcs
formed by the position pairs (i, j)’s. The majority of RNA secondary structures
has the characteristic that no two arcs cross (i.e., there exists no two arcs (i, j)
and (i′, j′) such that i < i′ < j < j′). With this condition, it is also common to
represent an RNA secondary structure as a labeled ordered forest F , where each
node in F corresponds to a free base in the sequence (i.e., a base that does not
pair with any other base) or an arc in the secondary structure such that:
– For any two nodes u and v in F , u is the parent of v iff u corresponds

to the parent arc of v (i.e., the smallest arc enclosing the base/arc that v
corresponds to).

– For any two nodes u and v in F , u is a right sibling of v iff u corresponds to
a base/arc that lies to the right of the base/arc of v.
Biologists have noticed that two RNAs sharing similar local substructure

(which is referred as motif) have similar functions. This observation motivates
the problem of computing the maximum common local substructure of two
RNAs. A number of ways to represent the local substructures of an RNA have
been proposed. Among them, the local sequence-structure motif [8] is the most
general one, because it can represent local RNA substructures whose bases are
connected when represented as a motif graph. For example, the local sequence-
structure motif can represent the putative SECIS-motif [18]. Formally, given an
RNA represented by (S, P ), (S′, P ′) is called a local sequence-structure motif [8]
of (S, P ) if and only if:
– S′ is a subsequence of S, and P ′ is a subset of P induced from S′;
– S′ is arc-complete for (S, P ) (i.e., for every (i, j) ∈ P , either i, j ∈ S′ or

i, j �∈ S′); and
– any intervalsk . . . sk′ is called anexclusionof S′ if sk . . . sl �∈ S′ and sk−1,sl+1 ∈

S′. Every exclusion sk . . . sl of S′ has an immediate successor, which is an
arc (i, j) ∈ P ′ such that i < k < l < j and j − i is minimized. Also, no two
exclusions of S′ share the same immediate successor.

Let F and F ′ be the forest representations of (S, P ) and (S′, P ′). The lemma
below shows that (S′, P ′) is a local sequence-structure motif of (S, P ) iff F ′ is a
β-gapped subforest of F .

Lemma 17. Consider two annotated sequences (S, P ) and (S′, P ′). Let F and
F ′ be the respective forest representations of them. We have (S′, P ′) is a sequence-
structure motif of (S, P ) if and only if F ′ is a β-gapped subforest of F .
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Proof. (⇒) Suppose (S′, P ′) is a local sequence-structure motif of (S, P ). First,
every exclusion in S′ should be arc-complete. Otherwise, there exists some arc
connecting a base in S′ and a base in the exclusion, thus it contradicts to the fact
that S′ is arc-complete. Hence, every exclusion is arc-complete and corresponds
to a closed subforest F [xi..yi]. In other words, F ′ is formed by excluding some
F [xi..yi]’s from some F [u..v]. Then, since no exclusion has the same immediate
successor, we conclude that all F [xi..yi]’s do not share the same parent. Thus, F ′

should be a gapped subforest of F . Finally, as every exclusion has an immediate
successor, there is no sibling interval xi..yi that can be excluded at the root level
of F ′, because otherwise F [xi..yi] would corresponds to an exclusion in S′ with
no immediate successor. Hence, F ′ is a β-gapped subforest of F ′.

(⇐) Suppose F ′ is a β-gapped subforest of F . F ′ is formed by excluding
some closed subforests F [xi..yi]’s from a closed subforest F [u..v]. Hence, the
corresponding S′ is arc-complete. Since no sibling interval can be excluded at
the root level of F ′, an excluded sibling interval (if one exists) has a parent in F ′.
Thus the corresponding exclusion has an immediate successor. Lastly, since there
is no xi..yi’s sharing the same parent, all exclusions have different immediate
successors. Hence, (S′, P ′) is a local sequence-structure motif of (S, P ). ��

Given Lemma 13 and the following lemma, the maximum local sequence-
structure motif of two annotated sequences (S1, P1) and (S2, P2) can be com-
puted in O(|F ||G|(deg(F ) + deg(G))2) time and O(|F ||G|deg(F )deg(G)) space.

Lemma 18. Given two annotated sequences (S1, P1) and (S2, P2), let F1 and
F2 be their forest representations. The optimal local sequence-structure motif
alignment of (S1, P1) and (S2, P2) is equivalent to the optimal restricted gapped
subforest alignment of F1 and F2.

5 Concluding Remarks

Our proposed problem and solutions motivate future development in local align-
ment of labeled ordered forests. One of the challenges is to find even more efficient
algorithms for the local forest alignment problems. Any improvement can have a
vital impact in RNA comparison and structure prediction applications. Another
difficult task is to further generalize the local gapped subforest alignment prob-
lem by allowing exclusions of more than one closed subforest sharing the same
parent. Lastly, new alignment models could be proposed to give more effective
and efficient algorithms for RNA comparison and structure prediction problems.
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