
In: New Topics in Theoretical Computer Science
Editors: Oleg N. Terikhovskyet al., pp. 119-141

ISBN 978-1-60456-100-5
c© 2008 Nova Science Publishers, Inc.

Chapter 4

THE M AXIMUM AGREEMENT OF TWO NESTED

PHYLOGENETIC NETWORKS ∗

Jesper Jansson1,2† and Wing-Kin Sung2,3‡

1INRIA Lille - Nord Europe, Equipe SEQUOIA, Villeneuve d’Ascq, France
2School of Computing, National University of Singapore, Singapore

3Genome Institute of Singapore, Genome, Singapore

Abstract

Given a setN of phylogenetic networks, the maximum agreement phylogenetic
subnetwork problem (MASN) asks for a subnetwork embedded ineveryNi ∈ N with
as many leaves as possible. MASN can be used to identify shared branching structure
among phylogenetic networks or to measure their similarity. In this chapter, we prove
that the general case of MASN is NP-hard already for two phylogenetic networks (in
fact, even if one of the two input networks is a binary tree), but that the problem can
be solved efficiently if each of the two input phylogenetic networks exhibits a nested
structure. For this purpose, we introduce the concept of a nested phylogenetic network
and study some of its underlying fundamental combinatorialproperties. We first show
that the total number of nodes|V (N)| in any nested phylogenetic networkN with
n leaves and nesting depthd is O(n(d + 1)). We then describe a simple algorithm
for testing if a given phylogenetic network is nested, and ifso, determining its nesting
depth inO(|V (N)| · (d + 1)) time. Next, we present a polynomial-time algorithm for
MASN for two nested phylogenetic networksN1, N2. Its running time isO(|V (N1)| ·
|V (N2)| · (d1 + 1) · (d2 + 1)), whered1 andd2 denote the nesting depths ofN1 and
N2, respectively. In contrast, the previously fastest algorithm for this problem runs
in O(|V (N1)| · |V (N2)| · 2f1+f2) time, wheref1 ≥ d1 andf2 ≥ d2. Finally, we
prove that if the nodes are allowed to have outdegree greaterthan2 then the problem
becomes NP-hard even if restricted to two phylogenetic networks with nesting depth1.
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1. Introduction

Phylogenetic trees are commonly used to describe evolutionary relationshipsamong a set
of objects (e.g., biological species, proteins, nucleic acids, viruses, orlanguages) believed
to have been produced by an evolutionary process, and can help scientists to understand the
mechanisms of evolution as well as to classify the objects being studied and to organize
information [2, 20, 25, 26]. However, evolutionary events such as horizontal gene transfer
or hybrid speciation (often referred to asrecombination events) which suggest convergence
between objects cannot be adequately represented in a single tree structure [12, 13, 21, 22,
23, 24, 28]. Phylogeneticnetworkssolve this shortcoming by allowing internal nodes to
have more than one parent, thereby making it easier for scientists to describe more complex
evolutionary relationships. Phylogenetic networks can also be used to visualize several
conflicting phylogenetic trees at the same time in order to represent ambiguity [4, 15, 16].

Various methods for constructing and comparing phylogenetic networks have been pro-
posed recently [4, 6, 12, 16, 17, 21, 22, 23, 24, 28]. Phylogenetic networkcomparisonhas
many uses; one application described in [22] is to assess the topological accuracy of dif-
ferent phylogenetic network construction methods1. Another application for phylogenetic
network comparison is to identify a subnetwork with as many leaves as possiblewhich is
contained in all of the networks in a given set (obtained, for example, by employing differ-
ent phylogenetic network construction methods or by using the same method onalternative
data sets) to determine which ancestral relationships are present in all networks. Moreover,
the size of such a subnetwork provides a measure of how similar the networks in a given
set are. This problem was formalized as a computational problem calledthe maximum
agreement phylogenetic subnetwork problem(MASN) and initially studied in [6].

The general case of MASN is NP-hard for three or more phylogenetic networks [6].
Actually, it is NP-hard even for justtwo networks, as we shall prove in Section 4.1.. On
the other hand, in the special case of no recombination events at all, MASN for two net-
works (i.e., rooted, leaf-labeled binary trees) can be solved very efficiently2. Fortunately,
in nature, recombination events usually do not occur in an unrestricted manner [12, 28]. It
is therefore important to establish what structural restrictions on the input networks make
the problem efficiently solvable. In this chapter, we investigate the computational com-
plexity of MASN for two phylogenetic networks whose merge paths arenested, which is
a natural generalization of rooted, leaf-labeled, binary trees and so called galled-trees pre-
viously studied in [12, 17, 23, 28] (see below for definitions), and prove that this case can
be solved by a polynomial-time algorithm. The decomposition technique for nestedphylo-
genetic networks that we develop here may also be applicable to other computational and
combinatorial problems related to phylogenetic network construction and comparison.

1To evaluate a construction methodM, the following steps are performed a number of times. First, a
phylogenetic networkN is randomly generated and a sequence is evolved down the edges ofN according
to some chosen model of evolution, then a phylogenetic networkN

′ for the resulting set of sequences is
reconstructed usingM, and finally the similarity betweenN ′ andN is measured.

2See the comments aboutthe maximum agreement subtree problem(MAST) in Section 1.3..
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1.1. Problem Definition

A phylogenetic networkis a connected, rooted, simple, directed acyclic graph in which:
(1) each node has outdegree at most2; (2) each node has indegree1 or 2, except the root
node which has indegree0; (3) no node has both indegree1 and outdegree1; and (4) all
nodes with outdegree0 are labeled by elements from a finite setL in such a way that no
two nodes are assigned the same label. From here on, nodes of outdegree 0 are referred to
as leavesand identified with their corresponding elements inL. We denote the set of all
nodes and the set of leaves in a phylogenetic networkN by V (N) andΛ(N), respectively.

Given a phylogenetic networkN and a setL′, the topological restrictionof N to L′,
denoted byN |L′, is defined as the phylogenetic network obtained by first deleting all nodes
which are not on any directed path from the root to a leaf inL′ along with their incident
edges, and then, for every node with outdegree1 and indegree less than2, contracting its
outgoing edge (any resulting set of multiple edges between two nodes is replaced by a
single edge).

Given a setN = {N1, N2, . . . , Nk} of phylogenetic networks, anagreement subnet-
work ofN is a phylogenetic networkA such thatΛ(A) ⊆ ⋂

Ni∈N
Λ(Ni) and for every

Ni ∈ N , it holds thatA is isomorphic to a graph obtained fromNi |Λ(A) by deleting
zero or more edges and contracting each outgoing edge from a node with resulting outde-
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Figure 1. A maximum agreement subnetwork of two given phylogenetic networks N1

andN2. Another maximum agreement subnetwork ofN1 andN2 (not shown here) has
leaf set{a, b, d, e}.
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gree1 and indegree less than2. A maximum agreement subnetwork ofN is an agreement
subnetwork ofN with the maximum possible number of leaves.The maximum agree-
ment phylogenetic subnetwork problem(MASN) is: Given a setN = {N1, N2, . . . , Nk}
of phylogenetic networks, find a maximum agreement subnetwork ofN . See Figure 1
for an example. A leaf can appear in a maximum agreement subnetwork ofN only
if it is present in every network inN , so we assume without loss of generality that
Λ(N1) = Λ(N2) = . . . = Λ(Nk) and call this leaf setL. Throughout this chapter, we let
n denote the number of different leaves andk the number of input networks, i.e.,n = |L|
andk = |N | in the problem definition above.

1.2. Terminology

LetN be a phylogenetic network. Recall that nodes inN with outdegree 0 are calledleaves.
We refer to nodes with indegree 2 ashybrid nodes. For any hybrid nodeh, every ancestors
of h such thath can be reached using two disjoint directed paths starting at the children ofs
is termed asplit node ofh. If s is a split node ofh then any path starting ats and ending
ath is called amerge path ofh, and any path starting at a child ofs and ending at a parent
of h is called aclipped merge path ofh.

For any hybrid nodeh, letM(h) denote the set of all merge paths ofh. We say thatN is
a nested phylogenetic networkif for each pair of hybrid nodesh1, h2, one of the following
three conditions holds: (1) eachP1 ∈ M(h1) andP2 ∈ M(h2) are internally disjoint
paths; (2) for eachP1 ∈ M(h1), there exists aP2 ∈ M(h2) such thatP1 is a subpath
of P2; or (3) for eachP2 ∈ M(h2), there exists aP1 ∈ M(h1) such thatP2 is a subpath
of P1. For example, in Figure 1, the phylogenetic networkN2 and the displayed maximum
agreement subnetwork are nested, butN1 is not.

For each nodeu in a nested phylogenetic networkN , define thenesting depth ofu,
d(u), as the number of hybrid nodes inN that have a clipped merge path passing throughu.
Figure 3 contains an example of a nested phylogenetic network where the nesting depths
of some nodes are shown. Thenesting depth ofN , denoted byd(N), is the maximum
value ofd(u) over all u ∈ V (N). Observe thatd(N) = 0 if and only if N is a binary
tree. Gusfieldet al. [12] defined agalled-tree(also referred to in the literature as agt-
network[23] or a topology with independent recombination events[28]) as a phylogenetic
network in which all clipped merge paths are disjoint. For a discussion on the biological
significance of galled-trees, see [12]. Clearly,d(N) ≤ 1 if and only if N is a galled-
tree. Thus, nested phylogenetic networks naturally extend the notion of rooted, leaf-labeled,
binary trees and galled-trees.

Finally, given any phylogenetic networkN , letU(N) be the undirected graph obtained
from N by replacing each directed edge by an undirected edge. For every biconnected com-
ponentB in U(N), thelevel ofB is the number of nodes it contains which are hybrid nodes
in N . N is said to be alevel-f phylogenetic network if the maximum level of all bicon-
nected components inU(N) is equal tof . To illustrate,N1 andN2 in Figure 1 are level-3
and level-2 phylogenetic networks, respectively, and the shown maximum agreement sub-
network ofN1 andN2 is a level-1 phylogenetic network. IfN is a nested phylogenetic
network with nesting depthd thenf ≥ d because any node inN that has nesting depthd
must belong to the same biconnected component inU(N) as at leastd different hybrid
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nodes. Also,f = 0 if and only if d = 0, andf = 1 if and only if d = 1.

1.3. Previous Results

Median-joining, split decomposition (SplitsTree), PYRAMIDS, statistical parsi-
mony (TCS), molecular-variance parsimony (Arlequin), reticulogram (T-REX), and
netting are some of the existing general methods forconstructingphylogenetic networks
(see [21] and [24] for a survey). More recently presented methods include Neighbor-
Net [4] and the Z-closure method [16]. Algorithms for some reconstructionproblems with
additional constraints on the networks were given in [5, 12, 17, 23, 28]; in particular, these
papers considered problems involving constructing a phylogenetic network with nesting
depth1.

As for comparing two given phylogenetic networks, one method based on the
Robinson-Foulds (RF) measure for phylogenetic trees was proposed in[22]. MASN was in-
troduced in [6], where it was shown to be NP-hard if restricted tok = 3 and anO(n2)-time
algorithm for the special case of two level-1 phylogenetic networks (i.e., having nesting
depth1) was presented. [6] also showed that MASN for a level-f1 phylogenetic networkN1

and a level-f2 phylogenetic networkN2 can be solved inO(|V (N1)| · |V (N2)| · 2f1+f2)
time.

MASN extends a well-studied problem known asthe maximum agreement subtree prob-
lem(MAST)3 (see, e.g., [1, 3, 7, 9, 11, 14, 18, 19, 27] and the numerous references therein)
in which the input is a set of distinctly leaf-labeled trees and the goal is to compute a tree
embedded in all of the input trees with the maximum possible number of labeled leaves.
The fastest known algorithm for MAST for two trees runs inO(

√
D n log(2n/D)) time,

wheren is the number of leaves andD is the maximum degree of the two input trees [18].
Note that this isO(n log n) for two trees withD bounded by a constant andO(n1.5) for two
trees with unboundedD. MAST is NP-hard for three trees with unbounded degrees [1], and
solvable inO(kn3 + nδ) time for k ≥ 3 trees, whereδ is an upper bound on at least one
of the input trees’ degrees [3, 9] (forδ = 2, even faster algorithms exist [19]). The inap-
proximability of MAST has been studied in [11] and [14], in terms of how the heights and
degrees of the input trees as well as the number of input trees affect thepolynomial-time
approximability of MAST.

1.4. Our Results and Organization of Chapter

In this chapter, we focus on MASN for two nested phylogenetic networks.
In Section 2., we derive some useful combinatorial properties of nested phylogenetic

networks. We first prove that|V (N)| = O(n(d + 1)) for any nested phylogenetic net-
work N with n leaves and nesting depthd and then show how to test whether a given phy-
logenetic network is nested, and if so, determine its nesting depth inO(|V (N)| · (d + 1))
time. In Section 3., we present a fast dynamic programming-based algorithm for solving
MASN for two nested phylogenetic networksN1 andN2 running inO(|V (N1)| · |V (N2)| ·
(d1 +1) · (d2 +1)) time, whered1 andd2 are the nesting depths ofN1 andN2, respectively,
which generalizes the algorithm from [6]. (The algorithm given in [6] could be applied here

3MAST is also known in the literature asthe maximum homeomorphic subtree problem(MHT).
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directly but its running time isO(|V (N1)| · |V (N2)| ·2f1+f2), wheref1 ≥ d1 andf2 ≥ d2.)
For the special cased1 = 1, d2 = 1, i.e., two galled trees/level-1 networks, the running
time of our new algorithm coincides with the running time ofO(n2) of the algorithm in [6].
Next, in Section 4.1., we strengthen the NP-hardness result of [6] by proving that MASN is
NP-hard already fortwophylogenetic networks, even when one of the networks is required
to be a binary tree4. In Section 4.2., we consider a new variant of MASN in which the defi-
nition of a phylogenetic network is relaxed to allow nodes to have outdegree greater than2
and prove that with this modification, the problem becomes NP-hard even if restricted to
two nested phylogenetic networks with nesting depth1 (i.e., two galled-trees/level-1 net-
works). Finally, we discuss possible extensions of our techniques in Section 5..

2. Preliminaries

We first investigate some basic properties of nested phylogenetic networks.

Lemma 1. If N is a nested phylogenetic network then: (1) each split node inN is a split
node of exactly one hybrid node, and (2) each hybrid node inN has exactly one split node.

Proof. Let s be any split node inN and denote the two children ofs by c andd. Suppose,
for the sake of contradiction, that there exist two hybrid nodesh1 andh2 such thats is a
split node of bothh1 andh2. For i ∈ {1, 2}, let Ci andDi be two disjoint clipped merge
paths ofhi starting atc andd, respectively, and ending at the two parents ofhi, and letC ′

i

andD′
i be the corresponding (non-clipped) merge paths. Since the intersection of C ′

1 and
C ′

2 containsc, one must be a subpath of the other by the definition of a nested phylogenetic
network, and similarly forD′

1 andD′
2. Now, if C ′

1 is a subpath ofC ′
2 thenD′

1 must be
a subpath ofD′

2 (otherwise, there would exist a directed path fromh1 to h2 and fromh2

to h1, contradicting that a phylogenetic network has no cycles), but thenC2 andD2 are not
disjoint because both pass throughh1. Contradiction. The case whereC ′

2 is a subpath ofC ′
1

is analogous. (1) follows.
To prove (2), suppose some hybrid nodeh has two split nodess1 ands2. Denote the

parents ofh by p andq. For i ∈ {1, 2}, let Pi andQi be two disjoint clipped merge paths
of h starting at the two children ofsi and ending atp andq, respectively, and letP ′

i and
Q′

i be the corresponding (non-clipped) merge paths. Lethp be the node in the intersection
of P ′

1 andP ′
2 closest to the root, lethq be the node in the intersection ofQ′

1 andQ′
2 closest

to the root, and lets be the lowest common ancestor ofs1 and2. If s 6= s1 ands 6= s2

thens is a split node of three hybrid nodes (h, hp, andhq), and if s = s1 or s = s2 then
s is a split node of two hybrid nodes (h and eitherhp or hq). In both cases, we have a
contradiction with (1).

Because of Lemma 1, each hybrid node in a nested phylogenetic network corresponds
to a unique split node. For any such hybrid nodeh and split nodes, s is calledthe split
node ofh andh is calledthe hybrid node ofs.

4The reduction in [1] for proving the NP-hardness of MAST restricted to three trees with unbounded degrees
cannot be used directly for MASN withk = 2 because it constructsthreetrees and because here we require
all nodes to have outdegree at most two. It is interesting to note that MAST for two binary trees is solvable in
O(n log n) time [7, 18].
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Lemma 2. Let h be a hybrid node in a nested phylogenetic network and lets be the split
node ofh. Thend(h) = d(s).

Proof. Supposed(h) < d(s). Then there exists some clipped merge pathP containings
but noth. Let P ′ be the corresponding (non-clipped) merge path. Sinces has outdegree2,
P ′ must contain one of the outgoing edges froms. Let Q be the merge path ofh which
also uses this edge. Now,P ′ andQ are not disjoint and one is not a subpath of the other,
yet their intersection contains at least two nodes, contradicting the definitionof a nested
phylogenetic network. The cased(h) > d(s) can be disproved in the same way.

We now derive an upper bound on the total number of nodes in a nested phylogenetic
network. The next two lemmas generalize Lemmas 2 and 3 in [6].

Lemma 3. If N is a nested phylogenetic network withn leaves and nesting depthd then
the number of hybrid nodes inN is at most(n − 1) · d.

Proof. Let TN (d) be the phylogenetic networkN . Then, fori ∈ {0, 1, . . . , d − 1}, define
TN (i) as the rooted directed graph constructed fromTN (i+1) as follows. For every hybrid
nodeh in TN (i+1) with d(h) = i, removeh’s two incoming edges, contract the split node
of h and all nodes on the two clipped merge paths ofh to a single nodes, and add a directed
edge froms to h. (Note that the obtainedTN (i) may contain nodes with outdegree greater
than2.) TN (0) is a tree because every node with indegree2 in N has indegree1 in TN (0)
and no contraction increases the indegree of any node. Furthermore,TN (0) containsn
leaves. Thus, the number of internal nodes inTN (0) with outdegree> 1 is at mostn − 1.
Next, observe that at mostd split nodes inN correspond to each internal node inTN (0)
with outdegree> 1 and that the number of hybrid nodes inN equals the number of split
nodes inN sinceN is nested.

Lemma 4. If N is a phylogenetic network withn leaves andH hybrid nodes then the total
number of nodes inN is at most2(n + H) − 1.

Proof. Let zij denote the number of nodes inN which havei incoming edges andj outgo-
ing edges. By the definition of a phylogenetic network, the total number of nodes inN is
|V (N)| = z02 + z10 + z12 + z20 + z21 + z22. For everyu ∈ V (N), let in(u) andout(u)
denote the number of incoming and outgoing edges incident tou. Since















∑

u∈V (N)

in(u) = z02 · 0 + (z10 + z12) · 1 + (z20 + z21 + z22) · 2
∑

u∈V (N)

out(u) = (z10 + z20) · 0 + z21 · 1 + (z02 + z12 + z22) · 2

and
∑

u∈V (N)

in(u) =
∑

u∈V (N)

out(u), we havez12 = z10 + 2z20 + z21 − 2z02.

Next,H = z20 + z21 + z22, n = z10 + z20, andz02 = 1 give usz12 ≤ n + H − 2.
Hence,|V (N)| ≤ 1 + n + (n + H − 2) + H = 2n + 2H − 1.

For an example showing that the bounds given above are tight, refer to Figure 2. By
combining Lemmas 3 and 4, we get:
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Figure 2. An example of a nested phylogenetic networkN with nesting depthd and
n leaves for which the upper bounds given in Lemmas 3 and 4 are tight.N (shown on
the right) consists ofn − 1 copies ofAi (shown on the left) and is distinctly leaf-labeled
by {a1, a2, . . . , an−1, b}. The number of hybrid nodesH in N equals(n − 1) · d and
|V (N)| = (2d + 2)·(n − 1) + 1 = 2H + 2n − 1.

Theorem 5. If N is a nested phylogenetic network withn leaves and nesting depthd then
|V (N)| ≤ 2dn + 2n − 2d − 1, i.e.,|V (N)| = O(n(d + 1)).

We also have the following.

Theorem 6. Let N be a phylogenetic network withn leaves andH hybrid nodes. We can
test whetherN is nested inO(|V (N)| · (H + 1)) time; if N is nested, the test takes only
O(|V (N)|·(d(N)+1)) time and its nesting depth can be determined in the same asymptotic
time bound.

Proof. Use the following method to construct a listL(u) for everyu ∈ V (N) consisting of
all hybrid nodes which have a clipped merge path passing throughu, plusu itself if u is a
hybrid node. Associate an initially empty listL(u) to eachu ∈ V (N), and defineL(∅) = ∅.
Visit the nodes ofN according to a reverse topological ordering ofN . Whenever a non-leaf
nodeu is visited, examineL(uL) andL(uR), whereuL anduR are the children ofu (if u
only has one child then letuR equal∅). If L(uL) is empty then letL(u) := L(uR); else if
L(uR) is empty then letL(u) := L(uL). Otherwise, check whetherL(uL) equalsL(uR).
If no thenN is not nested, and the algorithm terminates; if yes then letL(u) := L(uL)
and remove the last elementℓ from L(u) (in this case,u is the split node for the hybrid
nodeℓ). Finally, if u is a hybrid node then insertu at the end ofL(u). Note that a node
may be both a split node and a hybrid node. The length of anyL(u) can never exceed the
number of hybrid nodes inN . Moreover, when the algorithm is finished, ifN is a nested
phylogenetic network then its nesting depthd(N) equals the maximum length ofL(u) over
all u ∈ V (N) sinced(u) = |L(u)| for each non-hybrid nodeu.

The time taken at each node inN is bounded byO(1 + maxu∈V (N) |L(u)|).
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3. An Algorithm for MASN for Two Nested Phylogenetic Net-
works

In this section, we show how to solve MASN for two nested phylogenetic networksN1, N2

with n leaves inO(|V (N1)| · |V (N2)| · (d1 + 1) · (d2 + 1)) time, whered1 andd2 are the
nesting depths ofN1 andN2, respectively. We first introduce some additional notation.

Let N be any nested phylogenetic network. From this point onward, assume thatsome
arbitrary left-to-right ordering of the children of every node has beenfixed. If u ∈ V (N)
has two children then letuL anduR denote the left and right child ofu, respectively, and
if u only has one childc then setuL = c anduR = ∅. For everyu ∈ V (N), N [u] is
the subnetwork ofN rooted atu, i.e., the minimal subgraph ofN which includes all nodes
and directed edges ofN reachable fromu. N [∅] refers to the empty network with no nodes
or edges.

Eachu ∈ V (N) belongs tod(u) different clipped merge paths. SinceN is nested,
the d(u) different hybrid nodes corresponding to these clipped merge paths have nesting
depths0, 1, . . . , d(u) − 1. For i ∈ {1, . . . , d(u)}, we definehi(u) as the hybrid nodeh
which has a clipped merge path passing throughu and which satisfiesd(h) = i − 1. Next,
for i ∈ {1, . . . , d(u)}, let N i[u] be the subgraph ofN [u] whereN [hi(u)] and hi(u)’s
incoming edge have been removed, and letN0[u] beN [u]. DefineN i[u] for i > d(u) as
N0[u] if u is not a hybrid node, and asN [∅] if u is a hybrid node. See Figure 3. Intuitively,
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Figure 3.N is a nested phylogenetic network with nesting depth3 andu is a split node inN .
The numbers shown next to the nodes ofN are their respective nesting depths.N2[uL] and
N0[uR] are the subgraphs ofN displayed on the right.
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the parameteri informs us at which descendant hybrid node ofu to cutN [u] to obtainN i[u].

Lemma 7. For any nested phylogenetic networkN , u ∈ V (N), and0 ≤ j < i ≤ d(u), it
holds thatN i[u] is a proper subgraph ofN j [u].

Proof. If j = 0 thenN i[u] is trivially a proper subgraph ofN j [u] (= N0[u] = N [u]).
If j > 0, the nodehj(u) is a descendant ofhi(u) sincej < i, soN [hj(u)] is a proper
subgraph ofN [hi(u)], and thereforeN i[u] is a proper subgraph ofN j [u].

Lemma 8. Let N be a nested phylogenetic network. For anyu ∈ V (N) and i ∈
{0, 1, . . . , d(u)}, it holds that: (1)N i[uL] and Nx[uR] are disjoint, and (2)Nx[uL] and
N i[uR] are disjoint, wherex = d(u) + 1 if u is a split node andx = i otherwise.

Proof. If u is a split node then leth be the hybrid node ofu. By Lemma 2,d(h) = d(u).
Let c1 be a child ofu with c1 6= h and letc2 be the other child ofu, possibly withc2 = h.
We havehx(c1) = hd(u)+1(c1) = h, which means thatNx[c1] does not contain any nodes
in N [h]; hence,Nx[c1] andN0[c2] are disjoint, and Lemma 7 then implies thatNx[c1] and
N i[c2] are disjoint. Similarly,N i[c1] andNx[c2] are disjoint (ifc2 6= h thenhx(c2) =
hd(u)+1(c2) = h so Nx[c2] contains no nodes inN [h] and thus no nodes inN i[c1]; if
c2 = h thenNx[c2] = Nd(u)+1[h] = Nd(h)+1[h] = N [∅]).

If u is not a split node thenN [uL] (= N0[uL]) andN [uR] (= N0[uR]) are always
disjoint. By Lemma 7,N i[uL] andN i[uR] are disjoint.

For any two phylogenetic networksN1, N2, defineMasn(N1, N2) as the number of
leaves in a maximum agreement subnetwork. IfN1 or N2 is an empty network then
Masn(N1, N2) is equal to0. Otherwise,Masn(N1, N2) for two nested phylogenetic net-
works can be expressed recursively using the following lemma which is a generalization of
the main lemma in [27] for MAST. In theMatch case, when trying to match two subnet-
worksN i

1[uL] andNx
1 [uR] to two subnetworksNk

2 [vL] andNy
2 [vR], Lemma 8 ensures that

the set of nodes in the intersection ofV (N1[uL]) andV (N1[uR]) is matched to only one of
Nk

2 [vL] andNy
2 [vR], and vice versa.

Lemma 9. Let N1 and N2 be two nested phylogenetic networks. For every(u, v) ∈
V (N1) × V (N2) and0 ≤ i ≤ d(u), 0 ≤ k ≤ d(v),

Masn(N i
1[u], Nk

2 [v]) =

{

|Λ(N i
1[u]) ∩ Λ(Nk

2 [v])|, if at least one ofu andv is a leaf

max{Diag(N i
1[u], Nk

2 [v]), Match(N i
1[u], Nk

2 [v])}, otherwise

where

Diag(N i
1[u], Nk

2 [v]) = max{Masn(N i
1[u], Nk

2 [vL]), Masn(N i
1[u], Nk

2 [vR]),

Masn(N i
1[uL], Nk

2 [v]), Masn(N i
1[uR], Nk

2 [v])}
and

Match(N i
1[u], Nk

2 [v]) = max{Masn(N i
1[uL], Nk

2 [vL]) + Masn(Nx
1 [uR], Ny

2 [vR]),

Masn(N i
1[uL], Ny

2 [vL]) + Masn(Nx
1 [uR], Nk

2 [vR]),

Masn(N i
1[uL], Nk

2 [vR]) + Masn(Nx
1 [uR], Ny

2 [vL]),

Masn(N i
1[uL], Ny

2 [vR]) + Masn(Nx
1 [uR], Nk

2 [vL]),
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Masn(Nx
1 [uL], Nk

2 [vL]) + Masn(N i
1[uR], Ny

2 [vR]),

Masn(Nx
1 [uL], Ny

2 [vL]) + Masn(N i
1[uR], Nk

2 [vR]),

Masn(Nx
1 [uL], Nk

2 [vR]) + Masn(N i
1[uR], Ny

2 [vL]),

Masn(Nx
1 [uL], Ny

2 [vR]) + Masn(N i
1[uR], Nk

2 [vL])},

wherex =

{

d(u) + 1, if u is a split node
i, otherwise

y =

{

d(v) + 1, if v is a split node
k, otherwise

Proof. [Generalization of [27]] If at least one ofu and v is a leafℓ then the size of a
maximum agreement subnetwork ofN i

1[u] andNk
2 [v] is either0 or 1, depending on whether

or notℓ occurs in the other subnetwork, i.e.,Masn is equal to|Λ(N i
1[u]) ∩ Λ(Nk

2 [v])|.
If neither ofu andv are leaves then letA be any maximum agreement subnetwork of

N i
1[u] andNk

2 [v] which is a tree (such anA must exist because for any agreement subnet-
work B which is not a tree, if one parent edge of each hybrid node inB is deleted and edge
contractions are performed, we get an agreement subnetworkA with Λ(A) = Λ(B) which
is a tree). WriteM = Λ(A) so that|M | = Masn(N i

1[u], Nk
2 [v]). Let a1 anda2 be the

lowest common ancestor inN i
1[u] andNk

2 [v], respectively, of the leaves inM . There are
two main cases:

1. a1 6= u or a2 6= v (theDiag case).
Here, A is also a maximum agreement subnetwork of each pair of networks
(N i

1[x], Nk
2 [y]) wherex belongs to any path fromu to a1 andy belongs to any path

from v to a2. Hence,Masn(N i
1[u], Nk

2 [v]) is equal toMasn(N i
1[w1], N

k
2 [w2]) for

some(w1, w2) ∈ {(u, vL), (u, vR), (uL, v), (uR, v)}.

2. a1 = u anda2 = v (theMatch case).
The elements inM are descendants of both ofu’s children and also of both ofv’s
children. LetAa andAb be the two subtrees ofA rooted at the children of the root
of A.

By Lemma 8,N i
1[uL] andNx

1 [uR] are disjoint; furthermore, everyv ∈ V (N i
1[u]) \

{u} belongs to exactly one ofN i
1[uL] and Nx

1 [uR]. The same holds forNx
1 [uL]

andN i
1[uR] (observe that ifu is not a split node thenx = i and these two cases

coincide), and there are no other ways to divideN i
1[u] into two disjoint subnetworks

rooted atuL anduR. Similarly, Nk
2 [v] can be divided into two disjoint subnetworks

rooted atvL andvR in at most two ways.Aa is therefore a maximum agreement
subnetwork ofNp1

1 [ua] andNp2

2 [va], andAb is a maximum agreement subnetwork
of N q1

1 [ub] andN q2

2 [vb] for someua, ub ∈ {uL, uR} with ua 6= ub and someva, vb ∈
{vL, vR} with va 6= vb, and wherep1 = i andq1 = x, or p1 = x andq1 = i, and
wherep2 = k andq2 = y, or p2 = y andq2 = k. Now, Masn(N i

1[u], Nk
2 [v]) =

|M | = |Λ(A)| = |Λ(Aa)| + |Λ(Ab)| is given by one of the eight cases in the
equation forMatch.

Finally, note that in theDiag case, the value ofMatch is at most|M |, and in the
Match case, the value ofDiag is at most|M |. Taking the maximum ofDiag andMatch
thus gives us the size of a maximum agreement subnetwork.
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Now, given two nested phylogenetic networksN1 andN2, we can use Lemma 9 to
computeMasn(N i

1[u], Nk
2 [v]) for all 0 ≤ i ≤ d(u) and 0 ≤ k ≤ d(v) by applying

dynamic programming in a bottom-up manner, e.g., by evaluating all pairs inV (N1) ×
V (N2) in increasing order in the lexicographic orderingO of V (N1) × V (N2) where the
nodes in eachV (Ni) are ordered according to a reverse topological ordering ofNi. The
resulting algorithm (AlgorithmNestedMasn) is listed in Figure 4.

Algorithm NestedMasn

Input: Two nested phylogenetic networksN1 andN2.

Output: The number of leaves in a maximum agreement subnetwork of{N1, N2}.

1 Compute and stored(u) andhi(u) for all u ∈ V (N1) ∪ V (N2), i ∈ {1, . . . , d(u)}.
2 LetO be the lexicographic ordering ofV (N1)×V (N2) where the nodes in eachV (Ni) are

ordered according to a reverse topological ordering ofNi.
3 for each(u, v) ∈ V (N1) × V (N2) in increasing order inO do

ComputeMasn(N i
1[u], Nk

2 [v]) for all 0 ≤ i ≤ d(u), 0 ≤ k ≤ d(v) by using the
expression in Lemma 9.

endfor
4 return Masn(N0

1 [r1], N
0
2 [r2]), whereri is the root ofNi for i ∈ {1, 2}.

End NestedMasn

Figure 4. A dynamic programming algorithm for computing all values ofMasn.

Lemma 10. NestedMasn runs inO(|V (N1)| · |V (N2)| · (d(N1) + 1) · (d(N2) + 1)) time.

Proof. In Step1 of Algorithm NestedMasn, we may computed(u) andhi(u) for all u ∈
V (N), i ∈ {1, . . . , d(u)} for a given nested phylogenetic networkN in a way similar to the
algorithm in the proof of Theorem 6 by traversing the nodes ofN in bottom-up order. (For
every leafu, d(u) = 0; when a non-leaf nodeu is reached, computehi(u) for all valid i
by usingd(uL), d(uR), hi(uL), andhi(uR) and checking if any ofuL anduR is a hybrid
node, and then assignd(u).) This takesO(|V (N)| · (d(N) + 1)) time.

Next, the algorithm evaluatesO(|V (N1)| · |V (N2)|) pairs of nodes. For any such pair
(u, v), if neitheru nor v is a leaf then it takes constant time to compute each one of the
O((d(N1)+1) · (d(N2)+1)) differentMasn(N i

1[u], Nk
2 [v])-values from previously com-

puted values. Ifu is a leaf then the value of each|Λ(N i
1[u]) ∩ Λ(Nk

2 [v])| can be ob-
tained in constant time as follows. Associate a binary vectorL(w) of lengthn to each
w ∈ V (N1)∪V (N2), where theith bit ofL(w) is set to1 if and only if leafi is a descendant
of w (note that allL(w)-vectors can be computed in advance inO((|V (N1)|+ |V (N2)|) ·n)
time by traversing each ofN1 andN2 according to a reverse topological ordering). Then to
determine whetheru ∈ Λ(N0

2 [v]), check if bitu in L(v) equals1; for k ≥ 1, the condition
u ∈ Λ(Nk

2 [v]) is equivalent tou ∈ Λ(N0
2 [v]) andu 6∈ Λ(N0

2 [hk(v)]). The case wherev is
a leaf is analogous.

Algorithm NestedMasn can be modified to compute the set of leaves in a maximum
agreement subnetwork without increasing the asymptotic running time by also recording
information about how eachMasn-value is attained as it is computed, e.g., by saving point-
ers. To construct an actual maximum agreement subnetwork from such asetL′, we may
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use a standard traceback technique to obtain a tree with leaf setL′ which is an agreement
subnetwork. This yields:

Theorem 11. Given two nested phylogenetic networksN1 andN2 with nesting depthsd1

andd2, respectively, a maximum agreement subnetwork can be computed inO(|V (N1)| ·
|V (N2)| · (d1 + 1) · (d2 + 1)) time.

4. New NP-hardness Results

Below, we first show that MASN is NP-hard already fork = 2. We then show that if our
definition of a phylogenetic network is relaxed so that the outdegrees of thenodes are un-
bounded, then the problem becomes NP-hard even if restricted to two nested phylogenetic
networks with nesting depth1.

4.1. MASN with k = 2 is NP-hard

To prove the NP-hardness of MASN for every fixedk ≥ 2, we provide a polynomial-time
reduction from the following problem.

Three-Dimensional Matching (3DM)

Instance: A set M ⊆ X × Y × Z, whereX, Y , and Z are disjoint sets andX =
{x1, . . . , xq}, Y = {y1, . . . , yq}, andZ = {z1, . . . , zq}.

Question: Is there a subsetM ′ of M with |M ′| = q such thatM ′ is a matching, i.e., such
that for every paire1, e2 ∈ M ′ it holds thate1 ande2 differ in all coordinates?

3DM is NP-complete (see, e.g., [10]). Given an arbitrary instance of 3DM, construct
an instance of MASN with two phylogenetic networksN1 andN2 with a leaf setL as
described next. (In fact,N1 will be a leaf-labeled binary tree.) The elements ofM are
encoded in subtrees calledSxi,zk

in N1 and in subtrees calledUyj
in N2. The purpose of

the subtrees namedAxi
, Bxi,zk

, andWzk
is to make sure that for any two triplese andf

in M , a maximum agreement subnetwork ofN1 andN2 can contain both of the two leaves
representinge andf if and only if e andf differ in all coordinates.

Let the leaf setL equalM ∪A ∪B, whereA is a set ofq6 · (q + 2) elements not inM
andB is a set ofq6 elements not inM or A. Let Ax0

, Ax1
, . . . , Axq , Axq+1

beq + 2 binary
trees withq6 leaves each, distinctly labeled byA. For every(xi, zk) ∈ X × Z, let Bxi,zk

be a binary tree withq4 leaves, distinctly labeled byB.
For every(xi, zk) ∈ X ×Z, define: (1)Mxi,zk

as the subset ofM containing all triples
of the form (xi, y, zk) wherey ∈ Y ; and (2)Sxi,zk

to be a tree obtained from a binary
caterpillar tree with|Mxi,zk

| + 1 leaves distinctly labeled byMxi,zk
and where one of the

bottommost leaves has been replaced by the root ofBxi,zk
. See Figure 5. For everyyj ∈ Y ,

define: (1)Myj
as the subset ofM containing all triples of the form(x, yj , z) wherex ∈ X

andz ∈ Z; and (2)Uyj
to be a binary caterpillar tree with|Myj

| + q leaves in which the
|Myj

| leaves closest to the root are distinctly labeled byMyj
and the rest are unlabeled

nodes referred to asvyj ,zk
for 1 ≤ k ≤ q. Finally, for everyzk ∈ Z, defineWzk

to be a tree
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Figure 5. AssumeMx8,z3
= {(x8, y1, z3), (x8, y3, z3), (x8, y4, z3), (x8, y7, z3)} and

My4
= {(x4, y4, z5), (x8, y4, z3)}. Sx8,z3

andUy4
are shown on the left and in the cen-

ter, respectively. The structure of eachWzk
is shown on the right.

Q
1,2

Q
1,4

Q
1,3

Q

Q

Q

Q

p+1, 1

Q

P :

i,1
Q

1

2

3

4

q
Stage Stage1 i

1,1

p+1, 2

p+1, 3

p+1, 4

Q
1,q

Q
p+1, q

Q

Q

i,3

i,4

i,q

Q
i,2

QQ :

Figure 6. The sorting networkP on the left yields a directed acyclic graphQ.

obtained from the binary caterpillar tree withq leaves by replacing the leaves with the roots
of Bx1,zk

, . . . ,Bxq ,zk
.

Next, letP be any sorting network (see, e.g., [8]) forq elements with a polynomial num-
berp of comparator stages. Build a directed acyclic graphQ from P with (p + 1) · q nodes
{Qi,j | 1 ≤ i ≤ p+1, 1 ≤ j ≤ q} such that there is a directed edge(Qi,j , Qi+1,j) for every
1 ≤ i ≤ p and1 ≤ j ≤ q, and two directed edges(Qi,j , Qi+1,k) and(Qi,k, Qi+1,j) for ev-
ery comparator(j, k) at stagei in P for 1 ≤ i ≤ p, as illustrated in Figure 6. Furthermore,
constructq directed paths{G1, . . . , Gq} where eachGk = (G1,k, . . . , Gq,k).

Let N1 be a phylogenetic network obtained by attaching to a directed path
(m1, m2, . . . , mq2+q+2), in order of non-decreasing distance fromm1, the roots ofAx0

,
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Figure 7. The phylogenetic networksN1 andN2.

Sx1,z1
, Sx1,z2

, . . . , Sx1,zq , Ax1
, Sx2,z1

, . . . , Sxq ,zq , Axq , andAxq+1
, and lettingm1 be the

root of N1. (Note thatN1 is actually a binary tree.) See Figure 7. The phylogenetic net-
work N2 is obtained by first attaching to a directed path(n1, n2, . . . , n2q+2), in order of
non-decreasing distance fromn1, the root ofAx0

, the nodeQ1,1, the root ofAx1
, the node

Q1,2, the root ofAx2
, . . . , the root ofAxq , and the root ofAxq+1

, and lettingn1 be the root
of N2. Then, forj ∈ {1, . . . , q}, let Qp+1,j coincide with the root ofUyj

, and for every
1 ≤ j ≤ q and1 ≤ k ≤ q add a directed edge(vyj ,zk

, Gj,k). Next, for every1 ≤ k ≤ q add
a directed edge fromGq,k to the root ofWzk

. Again, see Figure 7. Finally, for every node
in N1 andN2 having indegree1 and outdegree1, contract its outgoing edge.

Lemma 12. If M has a matching of sizeq then there exists an agreement subnetwork of
(N1, N2) with q7 + 2q6 + q5 + q leaves.

Proof. SupposeM has a matchingM ′ of sizeq. For every(xi, zk) ∈ X × Z, denote by
Vxi,zk

the set of all leaves inBxi,zk
. Let C = M ′ ∪ ⋃

(xi,yj ,zk)∈M ′ Vxi,zk
and letT be

N1 | (A ∪ C). For eachxi ∈ X, there is precisely one triple(xi, yj , zk) in M ′, so the path
in T from the root ofSxi,zk

to the root ofBxi,zk
has one leaf(xi, yj , zk) attached to it. Now

consider the structure ofN2 | (A ∪ C). SinceP is a sorting network, there areq disjoint
paths inQ from (Q1,π(1), Q1,π(2), . . . , Q1,π(q)) to (Qp+1,1, Qp+1,2, . . . , Qp+1,q) for any
given permutationπ of {1, 2, . . . , q}; in particular, this holds for the permutationπ defined
by the relationπ(j) = i for all (xi, yj , zk) ∈ M ′. Thus, for every(xi, yj , zk) in M ′, there
exists a path inN2 from noden2i to the root ofBxi,zk

(passing through the root ofUyj

and the nodesvyj ,zk
andGq,k) along which the leaf(xi, yj , zk) is attached. This implies
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thatT is a subgraph ofN2 | (A ∪ C), i.e.,T is an agreement subnetwork of(N1, N2) with
|A| + q · (1 + q4) = q7 + 2q6 + q5 + q leaves.

Lemma 13. If there exists an agreement subnetwork of(N1, N2) with q7 + 2q6 + q5 + q
leaves thenM has a matching of sizeq.

Proof. Suppose there exists an agreement subnetworkT ′ with a leaf setL′ ⊆ L such that
|L′| = q7 + 2q6 + q5 + q. Write M ′ = L′ ∩ M , A′ = L′ ∩ A, andB′ = L′ ∩ B. First
observe that the number of elements inL′ is strictly greater than the number of elements
in L \ {a | a is a leaf ofAx0

}, so at least one leaf fromAx0
must be included inL′ by

the pigeonhole principle. Hence, the root ofT ′ corresponds to the roots ofN1 andN2.
Similarly, at least one leafℓi from Axi

for everyxi ∈ X and at least one leafℓq+1 from
Axq+1

must belong toL′. Also by the pigeonhole principle, a total of at least|L′| − |M | −
|A| ≥ q5+q−q3 leaves fromB must be included inL′, and these leaves must in fact belong
to at leastq different subtrees of the formBxi,zk

(this is becauseq − 1 different subtrees
of the formBxi,zk

can only contain(q − 1) · q4 leaves and(q − 1) · q4 < q5 + q − q3).
However,L′ cannot contain leaves from bothBxi1

,zk1
andBxi2

,zk2
if i1 6= i2 andk1 = k2

(if b1 andb2 are two such leaves then they appear in differentSxi,zk
in N1 but in the same

Wzk
in N2, so, e.g.,N1 | {b1, b2, ℓq+1} andN2 | {b1, b2, ℓq+1} differ, which contradicts that

{b1, b2, ℓq+1} are leaves inT ′), or if i1 = i2 andk1 6= k2 (if b1 andb2 were two such leaves
thenN1 | {b1, b2, ℓi1−1, ℓi1} andN2 | {b1, b2, ℓi1−1, ℓi1} would differ); thusB′ consists of
leaves from at mostq (and hence, preciselyq by the above) different subtrees of the form
Bxi,zk

, and we have|B′| ≤ q·q4, yielding|M ′| = |L′|−|A′|−|B′| ≥ |L′|−|A|−q5 = q.
We now show that for any two triplese = (xi1 , yj1 , zk1

) andf = (xi2 , yj2 , zk2
) in M ,

if e andf agree on at least one coordinate then they cannot both belong toL′, i.e.,M ′ is a
matching ofM . Using the same argument as above, ifL′ contains a leaf inBxi1

,zk1
then

L′ cannot contain any triple(xi2 , yj2 , zk2
) with i1 6= i2 andk1 = k2, or with i1 = i2 and

k1 6= k2. Then for any(xi1 , yj1 , zk1
) ∈ L′, L′ must also contain a leaf fromBxi1

,zk1
since

leaves fromq different subtrees of the formBxi,zk
must be included inL′, soe andf cannot

both belong toL′ if i1 6= i2 andk1 = k2, or if i1 = i2 andk1 6= k2. Next, if i1 6= i2,
j1 = j2, andk1 6= k2 thenN1 | {e, f, ℓq+1} andN2 | {e, f, ℓq+1} differ, implying thatL′

cannot contain bothe andf . Finally, if i1 = i2, j1 6= j2, andk1 = k2 ande, f ∈ L′ then the
roots ofUyj1

andUyj2
in N2 both have to correspond to nodes located in the same subtree

Sxi1
,zk1

in N1 becausee andf belong toSxi1
,zk1

, and then there are strictly less thanq − 1
availableUyj

-roots for the remainingq − 1 subtrees of the formSxi,zk
with leaves inL′,

which is a contradiction.

From the above, we obtain:

Theorem 14. MASN is NP-hard even if restricted tok = 2, and even if one of the two input
networks is a binary tree.

4.2. MASN with Unrestricted Outdegrees is NP-hard

Here, we prove that MASN for two nested phylogenetic networks with nesting depth1 (i.e.,
two galled trees/level-1 networks) is NP-hard if the nodes are allowed to have unrestricted
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outdegree. We give a polynomial-time reduction from the problem 3SAT, which is known
to be NP-complete (see, e.g., [10]).

Three-Satisfiability (3SAT)

Instance: A setU = {u1, ..., up} of Boolean variables and a collectionC = {c1, ..., cq}
of disjunctive clauses overU , each containing exactly3 literals.

Question: Is there a truth assignment forU that makes every clause inC true?

For everyui ∈ U , let J(ui) be the set{j : ui occurs in clausecj}. Without loss of
generality, assume that|J(ui)| ≥ 2. Let J(ui)k be thekth smallest integer inJ(ui) so
thatJ(ui)1 ≤ J(ui)2 ≤ ... ≤ J(ui)|J(ui)|. Now, given an instance of 3SAT, construct
an instance of MASN with two nested phylogenetic networksN = {N1, N2} (where the
outdegrees of the nodes are unrestricted) having a leaf setL as follows.

For eachui ∈ U , define a set of new elementsV (ui) = {vj
i , v

j
i , w

j
i , w

j
i : j ∈ J(ui)}.

Similarly, for eachcj ∈ C, define a set of six new elementsD(cj) = {dj [1], dj [2], dj [3],
ej [1], ej [2], ej [3]}. Let L =

⋃

ui∈U V (ui) ∪ ⋃

cj∈C D(cj). Note that for eachcj ∈ C,
there are exactly18 elements with the symbolj in their exponent, so|L| = 18q.

For any nonemptyL1, L2, L3 ⊆ L, defineS(L1; L2; L3) to be a nested phylogenetic
network with nesting depth1 having a single hybrid nodeh where: (1)|L1| leaves distinctly
labeled byL1 are attached to a path of length|L1| starting at the left child of the root and
ending ath; (2) |L2| leaves distinctly labeled byL2 are attached to a path of length|L2|
starting at the right child of the root and ending ath; and (3)h is the parent of|L3| leaves
distinctly labeled byL3. See Figure 8 for an example. For anycj ∈ C, let T (cj) be a tree
whose root has one child with three childrenx1, x2, x3, and where fork ∈ {1, 2, 3}, xk is
the parent of two leaves labeled bydj [k] andej [k].

We build the nested phylogenetic networkN1 as follows. First, for everyui ∈
U , construct for all k ∈ {1, ..., |J(ui)|} the networksS({vJ(ui)k

i } ; {vJ(ui)k+1

i } ;

{wJ(ui)k

i , w
J(ui)k+1

i }), whereJ(ui)|J(ui)|+1 ≡ J(ui)1, and let all their roots coincide with
the root ofN1. Then, constructT (c1), . . . , T (cq) and make all of their roots also coincide
with the root ofN1. See Figure 9.

Next, for everyui ∈ U and allj ∈ J(ui), if ui is thekth literal incj then defineR(ui, j)
asS({vj

i } ; {vj
i , dj [k], ej [k]} ; {wj

i , wj
i}); otherwise, ifui is thekth literal in cj then let

R(ui, j) be S({vj
i , dj [k], ej [k]} ; {vj

i} ; {wj
i , wj

i}). Let N2 be the nested phylogenetic
network whose root node coincides with the roots of allR(ui, j), whereui ∈ U andj ∈
J(ui). See Figure 10.

Lemma 15. If U has a truth assignment that makes every clause inC true then there exists
an agreement subnetwork of(N1, N2) with 10q leaves.

Proof. SupposeU has a truth assignmentA : U → {true, false} that satisfies all clauses
in C. For eachui ∈ U , construct a setL(ui) as follows. IfA(ui) = true then letL(ui) =
{vj

i , wj
i : j ∈ J(ui)} and defineℓ(uj

i ) = vj
i for all j ∈ J(ui), and if A(ui) = false

thenL(ui) = {vj
i , wj

i : j ∈ J(ui)} andℓ(uj
i ) = vj

i for all j ∈ J(ui). Next, for every
j ∈ J(ui), if ui is the variable with the lowest index which makescj true then adddj [k]



136 Jesper Jansson and Wing-Kin Sung

L2L1L TS c

2 [3]2e[3]2d[2]2e[2]2d[1]

3
2(    ) :

2
4w 2

4w

2
4v2

4v

d

e

ed

[3]2

[3]2

(     ;      ;      ) :

2[1]
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is shown on the left.T (c2) is shown on the right.
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Figure 9. The phylogenetic networkN1. Assume that variableu4 occurs inc2, c3, andc5 in
the given instance of 3SAT. Then the portion ofN1 that corresponds tou4 has the structure
shown above. Also shown isT (c3), the part corresponding toc3.

andej [k] to L(ui), whereui is thekth variable incj ; otherwise, ifui is not the variable with
the lowest index which makescj true then addℓ(uj

i ) to L(ui). Let L′ =
⋃

ui∈U L(ui).

Let T be the following tree, distinctly leaf-labeled byL′. For eachcj ∈ C, the rootr
of T has6 children. Letui be the variable (the one with the lowest index, if there exists
more than one) which makescj true when assigned the valueA(ui), and denote the other
two variables incj by ux anduy. Two of the children ofr corresponding tocj are leaves
labeled byℓ(uj

x) andℓ(uj
y). Another one of the children ofr is a node with two children

labeled bydj [k] andej [k], whereui is thekth variable incj . The remaining three children
of r corresponding tocj are nodes with two children each, labeled by eithervj

z andwj
z (if
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Figure 10. The phylogenetic networkN2. If c2 = (. . . ∨ . . . ∨ u4), c3 = (. . . ∨ . . . ∨ u4),
andc5 = (. . . ∨ u4 ∨ . . .) then the part corresponding tou4 looks as above.

3
4v

:T

4

3v

2
3w3

2v

3

3we [3]3d [3]3

3
2v

3
3v 3

3w

Figure 11. Assumec3 = (u2 ∨ u3 ∨ u4), A(u2) = false,A(u3) = true, andA(u4) = false.
The part ofT corresponding toc3 is displayed.d3[3] ande3[3] belong toT sincec3 is
satisfied because ofu4, i.e., the third variable inc3.

A(uz) = true) orvj
z andwj

z (if A(uz) = false) forz ∈ {i, x, y}. See Figure 11.T has
10 leaves for eachcj ∈ C, and thus10q leaves in total. It is easily verified thatT is a
subgraph ofN1 |L′ and also a subgraph ofN2 |L′, and hence an agreement subnetwork of
(N1, N2).

Lemma 16. If there exists an agreement subnetwork of(N1, N2) with 10q leaves thenU
has a truth assignment that makes every clause inC true.

Proof. Suppose there exists an agreement subnetworkT ′ with a leaf setL′ ⊆ L such that
|L′| = 10q. For eachcj ∈ C, denote the set of all leaves inL′ with the symbolj in their
exponent asLj . By the structure ofN1 andN2, at most one ofwj

i andwj
i for everyui ∈ U

andj ∈ J(ui) may appear inL′. Also, for eachcj ∈ C, elements from at most one of the
three pairs(dj [1], ej [1]), (dj [2], ej [2]), and(dj [3], ej [3]) can belong toL′. Furthermore, if
somedj [k] or ej [k] is in L′ then eithervj

i (if the kth literal of cj is of the formui) or vj
i (if
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thekth literal of cj is of the formui) cannot be inL′. Hence, for eachcj ∈ C, at most10
leaves with the symbolj in their exponent belong toL′. Denote the three variables which
are included incj by ux, uy, anduz. Since|L′| = 10q it follows that |Lj | = 10 andLj

must consist of: (1)dj [k] andej [k] for somek ∈ {1, 2, 3}; (2) five of the six elements in
{vj

x, vj
x, vj

y, vj
y, vj

z, vj
z}; and (3) for eacht ∈ {x, y, z}, eitherwj

t or wj
t .

Next, for eachui ∈ U , if wj
i ∈ L′ for somej ∈ J(ui) thenwk

i ∈ L′ for everyk ∈ J(ui)

(and analogously ifwj
i ∈ L′). This follows becausewJ(ui)k

i ∈ L′ implies thatwJ(ui)k+1

i 6∈
L′ (they belong to the sameS in N1 but differentS in N2), whereJ(ui)|J(ui)|+1 ≡ J(ui)1,

and by (3) above,wJ(ui)k+1

i ∈ L′. We can now define a truth assignmentA′ : U → {true,
false} as follows. For eachui ∈ U , if wk

i ∈ L′ for everyk ∈ J(ui) then setA′(ui) = true,
and ifwk

i ∈ L′ for everyk ∈ J(ui) then setA′(ui) = false.
Finally, we show that eachcj ∈ C is satisfied byA′. By the above,dj [k] andej [k] for

somek ∈ {1, 2, 3} belong toLj . Let ℓ be thekth literal in cj . If ℓ is of the formui thenvj
i

lies on the same side asdj [k] andej [k] in R(ui, j) in N2, and hencevj
i 6∈ L′ andwj

i 6∈ L′,
giving uswj

i ∈ L′ andA′(ui) = true. Otherwise,ℓ is of the formui and thenvj
i lies on the

same side asdj [k] andej [k] in R(ui, j) in N2, and hencevj
i 6∈ L′ andwj

i 6∈ L′, giving us
wj

i ∈ L′ andA′(ui) = false. In both cases,cj is satisfied.

Lemmas 15 and 16 give us the next theorem.

Theorem 17. If the restriction on the outdegrees of the nodes is removed then MASN is
NP-hard even for two nested phylogenetic networks with nesting depth1 (i.e., two galled-
trees/level-1 networks).

5. Conclusion

MASN with k = 2 is NP-hard (as proved in Section 4.1.), but efficiently solvable for
some special types of phylogenetic networks. For example, ifN1 andN2 are trees then the
problem can be solved inO(n log n) time [7, 18], if N1 andN2 are level-1 phylogenetic
networks (i.e., “galled-trees”, using the terminology of [12]) then the problem is solvable in
O(n2) time [6], and more generally, ifN1 andN2 are level-f phylogenetic networks, where
f = O(log(|V (N1)|+ |V (N2)|)), then theO(|V (N1)| · |V (N2)| ·4f )-time algorithm in [6]
runs in time which is polynomial in the input size. In this chapter, we have demonstrated
that even when the parameterf is unrestricted, the problem can be solved in polynomial
time if N1 andN2 are nested.

Does MASN for other types of structurally restricted phylogenetic networks admit ef-
ficient algorithms? In particular, is it possible to extend our method in Section 3.to two
networks in which every hybrid node has exactly one split node? An example of such a net-
work is shown in Figure 12. We would also like to know if MASN can be solved efficiently
for an even more complex structure which we call aplanar phylogenetic network, defined
as follows: for any positive integersa, b, let M(a, b) be a rooted, directed graph with node
set{Mi,j | 1 ≤ i ≤ a, 1 ≤ j ≤ b} such that there is one directed edge fromMi,j to Mi−1,j

for every2 ≤ i ≤ a and1 ≤ j ≤ b, and one directed edge fromMi,j to Mi,j−1 for every
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dcb

ea

Figure 12. This phylogenetic network is not nested although every hybridnode has exactly
one split node, and every split node has exactly one hybrid node. (Thus, the converse of
Lemma 1 is not true.)

1 ≤ i ≤ a and2 ≤ j ≤ b; we say that the networkN is an(a, b)-planar phylogenetic
networkif each biconnected component inU(N) is isomorphic to a subgraph ofM(a, b).

We believe MASN for more than two nested phylogenetic networks can be solved in
polynomial time whenk = O(1). It would also be interesting to investigate if any other
computational problems which are hard to solve for unrestricted phylogenetic networks but
known to be solvable in polynomial time for galled-trees can be solved efficiently for nested
phylogenetic networks with unrestricted nesting depths. One example of such a problem
might bethe perfect phylogenetic network with recombination problem, which is NP-hard
for unrestricted networks [28] but solvable in polynomial time for galled-trees [12].

The final open question is: can the running time of our algorithm for two nested phylo-
genetic networks be improved, e.g., by applying sparsification techniques?
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