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ABSTRACT

The online squarefree recognition problem is to detect the first occurrence of a
square in a string whose characters are provided as input one at a time. We present an
efficient algorithm to solve this problem for strings over arbitrarily ordered alphabets in
O(nlogn) time, where n is the ending position of the first square. We also note that the
same technique yields an O(n-(|2r|+logn))-time algorithm for general alphabets, where
|Zx| is the number of different symbols in the first n positions of the input string. (This
is faster than the previously fastest method for general alphabets when |Z,| = o(log? n).)
Finally, we present a simple algorithm for a dynamic version of the problem over general
alphabets in which we are initially given a squarefree string, followed by a series of
updates, and the objective is to determine after each update if the resulting string is still
squarefree.

Keywords: Square detection; squarefree string; online algorithm.
1. Introduction

1.1. Problem definitions

For any string T, let |T'| be the length of T'. For any positive integers i, j satisfying
1 <4< j < |T|, denote the substring of T starting at position ¢ and ending at

*A preliminary version of this paper has appeared in Proceedings of the Thirtieth International
Symposium on Mathematical Foundations of Computer Science (MFCS 2005), volume 3618 of
Lecture Notes in Computer Science, pages 520-531, Springer Verlag, 2005.
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position j by T'[i..J], and define T'[i] = T'[i..i]. A substring of the form T'[i..(i+2k —
1)], where k is a positive integer, is called a square (also known in the literature as a
tandem repeat) if for every x € {0,1,...,(k—1)}, it holds that T[i+z] = T[i+k+z].
If T does not contain a square, then T is squarefree.

In this paper, we study the squarefree recognition problem. We distinguish be-
tween the offline, online, and dynamic versions of this problem. In the offline
version, an entire string T is provided as input directly, and the objective is to
determine whether or not T contains a square. In the online version, the charac-
ters of the string T arrive one at a time in sequential order, and the objective is
to determine after receiving each character if the string obtained so far contains a
square; if so, report this fact and stop. Finally, in the dynamic version, a squarefree
string T is provided as the initial input and then followed by a series of updates
of the form “replace the symbol at position g of T by the symbol x”, “insert the
symbol x into T at position ¢”, or “delete the symbol at position ¢ from 77, and
the objective is to decide after each update if the resulting T' contains a square and
if so, report that T is no longer squarefree and stop.

The alphabet of the input string affects how quickly the different squarefree
recognition problems can be solved. Under the least restrictive assumption, the
symbols in T cannot be relatively ordered; a comparison between two symbols
only tells us if they are equal or not. We call this type of alphabet a general
alphabet. If the symbols in T" admit some arbitrary lexicographical ordering so that
any comparison between two symbols yields one of the three outcomes <, =, and >,
then the alphabet is called ordered.® Next, in an integer alphabet, all symbols are
integers in the range {1,2,...,|T|}. Finally, if the size of the alphabet is bounded
by a constant, then we say that the alphabet is constant. Note that these four
alphabet types are decreasingly restrictive in the sense that an algorithm for, e.g.,
general alphabets will also work for ordered alphabets (but not necessarily the other
way around).

1.2. Motivation

The online squarefree recognition problem has applications in diverse areas such as
string algorithms, bioinformatics, and online data compression [10] where we may
stop scanning the input as soon as a square has been formed (this can save a lot
of time if a square appears at the beginning of a very long input string). It is
also motivated by the local search method for solving the constraints satisfaction
problem in [8, 9, 14]; to guarantee that the method will not be trapped in some
infinite loop, one can encode the successive states of the search as characters in a
growing string and terminate the method if a square is formed at the end of this
string [10]. See [10] for additional references.

One of our main results in this paper is a fast algorithm for the case of arbitrarily
ordered alphabets. This is a reasonable assumption for most applications because

bAs an example to illustrate the difference between general and ordered alphabets, consider the
element uniqueness problem which has a lower bound of Q(n?) time for general alphabets but
admits an O(nlogn)-time solution for ordered alphabets (see [2]).
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when the symbols of the input string are encoded as binary numbers in a computer,
this will induce a lexicographical ordering among them.

1.3. Previous results

For the offline and general alphabet case, Main and Lorentz [11] gave an algorithm
that can be used to report all s occurrences of squares in a string T of length n
in O(nlogn + s) time, or just the longest square in 7' in O(nlogn) time. This is
optimal because to determine if T is squarefree takes Q(nlogn) time for general
alphabets [11]. For the offline and non-general alphabet case, other efficient algo-
rithms for finding squares were presented earlier in [1] and [4]. For the offline and
constant alphabet case, there exist algorithms that determine if T is squarefree in
optimal O(n) time [5, 12]. Parallel algorithms for finding squares offline have also
been developed (see [2]).

For the online and general alphabet case, Leung, Peng, and Ting [10] gave an
algorithm which has a running time of O(n log? n), where n is the ending position
in T of the first square. (This is just a factor of O(logn) worse than the optimal
offline algorithm for general alphabets mentioned above.) The algorithm of Leung,
Peng, and Ting is outlined in Section 2.1.

The dynamic version of the problem has not been studied before.

Recently and independently of this paper, Chen, Hong, and Lu [3] claimed to
have an O(n log|%,|)-time algorithm for the online squarefree recognition problem
for ordered alphabets, where [%,,| is the number of distinct characters in the first n
positions of T', and that the expected running time of their algorithm can easily be
reduced to O(n) using hash tables. There are two problems with this claim. Firstly,
in the subroutine named Ag(é1,i2,i3) described in Section 3.2 of [3], the authors
maintain a data structure from [11] (also described in [7]) for the substring T[is, 4]
while ¢ ranges from is + 1 to i3 such that the length of the longest common prefix
of T[ig..i] and T'[j..i] for any value of j with ¢ < j < ¢ can be obtained in O(1)
time, and such that the data structure for T'[i2..i] can be obtained from that of
Tig..(i — 1)] in amortized O(1) time. However, the O(ig — i2)-time method in [11]
is not an online method since it might need to look at symbols T'[k] with & > ¢,
i.e., symbols which have not been received yet. If we modify the method so that
it never looks past the current position i then it may have to update Q(is — i2)
longest common prefix-values when it reads a new symbol for Q(is — i2) iterations,
and then the amortized update time will not be O(1) per iteration. Secondly, since
the algorithm does not know the input alphabet or even the values of |Z,| or n in
advance, it seems difficult to predict a suitable hash table size or hashing function
for any new internal node created when constructing the suffix tree for T[1..¢] from
the suffix tree for T'[1..(¢ — 1)] in the main loop. On the other hand, in case the hash
tables are updated or rebuilt during the algorithm’s execution ([3] does not mention
if this is what their algorithm is supposed to do), it is important to make sure that
these operations are not too costly while the resulting hash tables still guarantee
that not too many collisions between symbols of the current input alphabet will
occur. We do not see how to do this within the required time bound.
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1.4. Our results

We first present an efficient algorithm for the online squarefree recognition problem
over arbitrarily ordered alphabets. The algorithm reads the successive characters
of T until a square has been formed, then reports the occurrence of this square
and stops. Its running time is O(nlogn), where n is the ending position in T of
the square; in other words, if n is the smallest integer such that T'[1..n] contains a
square, our algorithm correctly determines whether T'[1..h] contains a square after
reading T'[h] for every h € {1,2,...,n}. Our algorithm is based on the algorithm of
Leung, Peng, and Ting [10], but is faster. Our improvement comes from a speedup
for ordered alphabets of the key subroutine named DHangSq in [10].

Next, we show how to apply the new speedup technique to the general alphabet
case. We obtain an O(n-(|X,|+logn))-time algorithm for general alphabets, where
|2, ] is the number of distinet symbols in T'[1..n]. This is asymptotically faster than
the original algorithm of Leung, Peng, and Ting [10] if |, | is small compared to n
(more precisely, if [,] = o(log?n)). Note that long squarefree strings are possible
even for small alphabets; in fact, a classical result by Thue [13] states that a constant
alphabet of size 3 suffices to create infinitely long squarefree strings [11, 12].

Finally, we give a very simple algorithm for the dynamic squarefree recognition
problem. It works for general alphabets and uses O(n) time per update, where n is
the current length of T.

The table below summarizes our results in this paper for the online and dynamic
versions of the squarefree recognition problem.

| || Online version | Dynamic version |

Ordered O(nlogn) time O(n) time per update
alphabet | (Theorem 2, Section 2.4} | (Theorem 3, Section 3)
General O(n - (|Z,| +logn)) time | O(n) time per update
alphabet || (Corollary 1, Section 2.5) | (Theorem 3, Section 3)

2. An Efficient Algorithm for Online Squarefree Recognition over
Ordered Alphabets and Small General Alphabets

In this section, we present a fast algorithm for the online squarefree recognition
problem for arbitrarily ordered alphabets and small general alphabets.

2.1. LPT: The algorithm of Leung, Peng, and Ting

First, we briefly review the algorithm of Leung, Peng, and Ting [10], henceforth
referred to as LPT. Please refer to [10] for details as well as correctness proofs for
their algorithm.

Algorithm LPT is listed in Fig. 1. It reads the string T one character at a
time, starting with T'[1]. After reading a new position h, LPT immediately checks
if T[1..h] contains a square; if so then it reports the square and stops. Otherwise,
T[1..h] is squarefree, and the algorithm proceeds to read the character at the next
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Algorithm LPT:

For h € {1,2,...}, after reading T'[h], do the following:
if there is a square in T'[(h — 3)..h], or any of the active DHangSq(i, 5)
processes detects a square in T'[1..h], then report it and stop.
j=h =1,
while (5 > 2¢) do
if j = q - 2¢ for some integer ¢ then
i=max{l,q-2¢ —4.2¢ 1 1};
start DHangSq(%, j);
£=4+1;

Fig. 1. The algorithm of Leung, Peng, and Ting [10].

position from 7. To efficiently do the checking, LPT makes use of a procedure
called DHangSq(i,7) which solves the following subproblem: for every A € {(j +
1),(G+2),...,(25 —i+ 1)}, after T[h] is read, determine if T has a square ending
at position h whose first half lies entirely in the interval T'[i..j] (such a square is
said to be “hanging in T[i..j]”). When LPT reaches certain values of h, it starts a
new DHangSq process so that at any point of its execution, it will have a number of
active DHangSq(%, j) processes running, for various values of ¢ and j with ¢ < j.

To be more precise, for any ¢ < j and positive integer £, the pair (7, j) is called
a level-£ pair if there exists an integer ¢ such that j = ¢-2¢ and ¢ = max{1, q-2¢ —
4.2t 4 1}. (In this case, j —i < 4-2° —1.) Whenever LPT reaches a position j
of the form j = ¢ - 2¢ where £ and q are positive integers, it starts a DHangSq(i, 5)
process for the level-£ pair (3, j), where i = max{1, j —4-2¢+ 1}, which will remain
active until reaching position 25 — i + 1 or a square has been detected. See Fig. 2
for an example.

For any DHangSq(¢, j) process started by LPT, say that it is on level £ if (4,7) is
a level-£ pair. Here, we make the following crucial observation which will be used
in Section 2.4:

Lemma 1 At any point during the execution of LPT, there are at most four active
DHangSq processes on each level.

Proof. Suppose LPT has read T'[h] but not yet T'[h+1]. Consider any level £ <
log h. We claim that there are always at most four active DHangSq(i, j) processes on
level £. Let a be the largest multiple of 2¢ which is less than h, and write ¢ = ¢-2¥,
ie., g2 < h < (¢+1)-2°. Forany j € {2¢, 2.2%, ..., (¢g—4)-2%}, the DHangSq(i, j)
process on level £ started at position j will have finished at position 25 — i+ 1 =
jH(G—i+1) < (g—4)-26+(4-2%) = ¢q-2¢ < h. Therefore, the only DHangSq(i, ;)
processes on level £ which may possibly be active at the time when T'[h] is read are
those that were started for 7 € {(¢ —3) - 2%, (¢ —2)-2¢, (¢—1)-2% ¢-2%}.

In case h < (¢ + 1) - 2¢, no new DHangSq(7,5) process needs to be started and
the claim follows directly. Hence, assume h = (g + 1) - 2¢. If ¢ < 3 then at most
three DHangSq processes on level £ were started previously, and the claim follows.
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Fig. 2. The scope of DHangSq(%, 5) for some level-2 pairs. Each such DHangSq(i, j) process is started
right after reading T'[j], where j is a multiple of 22 and i = max{1, j — 4 - 22 + 1}, and remains
active until reaching T'[2j — ¢ + 1] or a square has been detected.

If ¢ > 3, observe that the DHangSq(,j) process on level £ which was started at
position j = (g — 3) - 2° ends at position j+ (j —i+1) < (g—3)-2°4(4-2%) = h,
where in case of equality, the new DHangSq process is started after the old one
terminates according to the description of LPT. Thus, there are always at most
four active DHangSq(%, j) processes on level £. O

The analysis in [10] of Algorithm LPT can be summarized and expressed as:

Theorem 1 [10] Suppose n is the smallest integer such that T[l..n] contains a
square. For every h € {1,2,...,n}, LPT correctly determines whether T[1..h] con-
tains o square after reading T[h]. The total running time of LPT is Z(E:% vl O(5¢) -

t(€), where t(£) is the running time of DHangSq(%,j) for a level-¢ pair (i,7).

Leung, Peng, and Ting [10] described how to implement DHangSq(%, 7) for general
alphabets to Tun in O((j — 4) - log(j — 4)) time, i.e., t(£) = O(2¢ - £) above. Using
this implementation, it follows from Theorem 1 that the total running time of LPT
is O(nlog® n).

2.2. Speeding up DHangSq

Recall that DHangSq(4, j) needs to solve the following problem: for every h € {(j +
1),(G+2),...,(2j —i+ 1)}, after T'[h] is read, determine if T has a square ending
at position A whose first half lies entirely in the interval T'[i..j]. Section 4 in [10]
shows that this problem can be reduced to the following problem at an additional
cost of O(j — 1) time, where the new parameter k is equal to j —i + 1:
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The minimum suffix-centers checking problem (MSCC):

Let A be a given string of length k and let L be a given list of k pairs of integers
of the form (1,e(1)),(2,e(2})),...,(k,e(k)), where for each s € {1,2,...,k} it
holds that 1 < s < e(s) < k. Next, let B be a string of length &k which arrives
online, one character at a time. Return the smallest possible b € {1,2,...,k}
for which there is a pair (s,e(s)) in L such that A[s..e(s)] is equal to B[l..h]; if
no such A exists then return fail.

This means that if we could solve MSCC in O(k) time then we could improve the
running time of DHangSq and hence Algorithm LPT; see Theorem 1. In particular:

Lemma 2 If we have an O(k)-time algorithm for MSCC then t(£) = O(2%) in
Theorem 1.

2.3. Solving MSCC for integer alphabets

Here, we give an algorithm for solving MSCC in O(k) time under the additional
constraint that A is a string over an integer alphabet {1,2,...,m} with m < k. (In
the next subsections, we show how to deal with this extra constraint for ordered
alphabets and small general alphabets by applying an input alphabet mapping
technique.)

The basic idea is to check, after receiving each B[h], if the string BJ[1..h] received
so far equals the first e(s) — s + 1 characters of the suffix A[s..k] for any s €
{1,2,...,k}. We use a suffix tree® to encode A so that we can match the successive
characters of B to all of A[1..e(1)], A[2..e(2)], ..., A[k..e(k)] efficiently until enough
characters match or no more matches are possible. For convenience, let s for any
s€{1,2,...,k} also refer to the unique leaf that represents the suffix A[s..k] in the
suffix tree for A. We rely on the following property of suffix trees:

Fact 1 (See, e.g., Sections 5.2-5.3 in [7].) Let p be any node or split point on an
edge in the suffix tree T4 for A4, and let C(p) be the concatenation of all edge labels
along the path in 74 starting at the root and ending at p. For any leaf s in 74, it
holds that s is a descendant of p or equal to p if and only if the first |C(p)| characters
of suffix A[s..k] are identical to C(p).

We now describe the details of our algorithm. It consists of two phases. Phase I
(the preprocessing phase) is performed after receiving A and L but before receiv-
ing any characters from B, and Phase IT (the matching phase) is performed while
receiving B.

Phase I (preprocessing phase): Construct the suffix tree 74 for A. Augment 74
with additional information as follows. For every edge f in 74, define v(f) as the
minimum value of e(s) — s+ 1 taken over all leaves s belonging to the subtree of 74

bThe suffiz tree for a string A is a compacted trie storing all the suffixes of A. See, e.g., [6, 7] for
a formal definition of a suffix tree.
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below f. Obtain and store v(f) for every edge f in T4 by a bottom-up traversal
of TA.

Phase II (matching phase): Check if B[1..h] equals A[s..e(s)] for any (s, e(s)) €
L for successive values of h € {1,2,...,k} with the following method. Start at
the root of T4 and traverse edges according to the received B[1], B[2],..., where to
traverse an edge that represents x characters we require that its label is equal to =
consecutive characters from B, until either the total number of matched characters h
reaches the value v(f) for the edge f being traversed (success; return h) or the
current character B[h] does not match any edge label at the current position in T4
(failure; return fail).

Finally, we prove the correctness and analyze the time complexity of the above
algorithm.

Correctness: Suppose the algorithm has just received B[h], where h € {1,2,... k}.
Let p be the node or split point on an edge in 74 reached by starting at the root and
traversing edges according to B[1..h], and let f be the lowest edge belonging to this
path. (If such a path does not exist then the algorithm will correctly return fail.)
First of all, according to the description above, the algorithm returns the current
value of h if and only if v(f) = h. Next, since the algorithm did not terminate
previously, there is no leaf s descending from p with e(s) — s+ 1 < h. Thus, by the
definition of v(f), we have v(f) = h if and only if there exists a leaf s descending
from p satisfying e(s) — s + 1 = h. Lastly, by Fact 1, each leaf s descending from p
represents a suffix A[s..k] whose h first characters equal the string B[1..h] received
so far. To conclude, there exists a suffix A[s..k] whose first e(s) — s + 1 characters
are identical to B[1..h] if and only if the algorithm returns h.

Running time: For Phase I, we use the algorithm of Farach-Colton et al. [6] for
constructing suffix trees over integer alphabets to build T4 in O(k) time. Next,
the bottom-up traversal to compute v(f) for every edge f in 74 takes O(k) time.
Then, in Phase II, the total time used for finding which outgoing edge to follow
in 74 from an internal node is upper-bounded by the total number of edges in 74
because each outgoing edge of 74 is examined at most once; since T4 has O(k) edges,
these computations take O(k) time. The rest of the computations in Phase IT take
O(1) time per read character and the algorithm reads at most & characters from B.
Therefore, the total running time of our algorithm is O(k).

We thus have:

Lemma 3 MSCC for integer alphabets can be solved in O(k) time.

2.4. An efficient algorithm for online squarefree recognition over ordered
alphabets

Our solution for the subproblem MSCC in Section 2.3 requires the alphabet of the
input string A to be an integer alphabet {1,2,...,m}, where m < |A|. Therefore,
we will modify Algorithm LPT so that before starting DHangSq for any required
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pair of indices (4, ), it translates T'[i..j] into an equivalent string T’ ; over the
alphabet {1,2,...,(j —i+ 1)}. Similarly, when a symbol is read from T, the algo-
rithm will translate that symbol into the corresponding integer alphabet for each
currently active DHangSq for checking. For this purpose, the modified LPT will
translate the input string T online to a string 7' over a growing integer alphabet
that is subsequently used to construct all the necessary Ti’.’,j—strings. In this sec-
tion, we demonstrate how these extra steps can be performed without increasing
the overall asymptotic running time of LPT. Below, the new version of LPT is
referred to as LPT™.

For any positive integer h, denote the set of symbols occurring in T[1..h] by Zp.
By our assumptions, each ¥, is ordered; except for this fact, we have no information
about the alphabet of T in advance.

Translating 7" to 7’: As the characters of T" arrive online, LPT* first translates
them to obtain an equivalent string 7”7 such that for every positive integer A, the
alphabet of T'[1..h] is exactly {1,2,...,|%r|}. To do this, it stores the distinct
symbols read from T so far in a balanced binary search tree B with the following
method: Let ¢ be a counter, initially set to 0. When position h of T is read,
first check if the symbol T[h] is already contained in B: if no then insert T'[A]
into B, increment ¢ by one, and associate the integer ¢ with this new symbol; if yes
then simply retrieve its associated integer. In both cases, let T'[h] be the integer
associated with T'[h]. Since the number of nodes in B while reading 7'[1..n] is always
less than or equal to |%,,| and because 33, is ordered, the total time used to translate
T[l..n] to T'[1..n] is O(nlog|%,|) = O(nlogn).

Translating 7' to T ;: Next, whenever LPT* starts DHangSq for some pair of
indices (,7), it also constructs an injective mapping f; ; from the set of symbols
occurring in T'[i..5] to the set {1,2,...,(j —i+1)} and applies f;.; to each position
in T"[i..j] to obtain a string T}’ ; over {1,2,...,(j — i+ 1)}. Furthermore, for each
such (%, j), until DHangSq(3, j) is terminated, LPT* keeps track of f; ; so that it can
translate online the characters in T[(5 + 1)..(27 — ¢ + 1)] to the same alphabet.

The mapping f;. ; is implemented as an array Fj ; such that for any z €
{1,2,...,j} occurring as a symbol in 7”[¢..j], the entry z in F; ; contains the
value f; j(z); the other entries of F; ; are left undefined. For efficiency reasons
explained below, LPT* will reuse the array F; ; for a terminated DHangSq, and
therefore also associates a “timestamp” of the form (i, j) with each entry of F; ; to
directly tell whether an entry is valid or contains old information. Suppose LPT*
needs to start a new DHangSq(%, j) for some ¢ immediately after reading a character
T'[4] and translating it to 7”[f]. Let ¢ be a counter, initially set to 0, and scan the
substring 7"[i..j]. For each s € {i,(¢+1),...,7}, first check if entry T'[s] in F;_;
already has been set by checking its timestamp: if no then increment ¢ by one,
set entry F; ;(1T"[s]) to ¢, and update the timestamp of f; ;(T"[s]). Clearly, this
takes only O(j — 1) time.

By Lemma 1, there are at most four active DHangSq(4, j) processes on each level
at any time, so we only need to keep track of four F; ;-arrays for every level reached.
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This means that we can reuse the array F; ; used for storing f; ; after DHangSq(%, 5)
terminates to store fir_;» for another DHangSq(7’,5') on the same level. By using
timestamps, we do not need to reinitialize all the positions of the array. However,
note that for any such (i', '), the array F; ; might not be large enough to store j’
entries. To handle this issue, whenever LPT* reaches a position of the input string
which equals a power of two, we let it double the size of every existing F; ;, (e.g.,
for each existing F;_;, initialize a new array with twice as many entries and copy the
contents of the old F; ; into the first half of the new array). Thus, after reading h
characters from T', every F; ; contains O(h) entries.

Supposing that LPT* terminates after reading T[1..n] for some positive inte-
ger n, the time needed for all these operations is bounded by Zyﬁ% nl Oo(r) - 4-
0(2") = O(nlogn). (LPT* doubles the arrays after reaching position 2" of T for
every integer r, i.e., not more than |logn| times. Every time, there are O(r) levels
and at most four active DHangSq on each level, and the doubling of an array uses
time proportional to the number of positions read from T so far.)

Total running time of LPT*: Suppose n is the smallest integer such that T[1..n)
contains a square. The total running time of LPT* is equal to the time needed to
do all the string translation operations to integer alphabets plus the running time of
LPT using the faster DHangSq for integer alphabets. By the above, the translation
operations take a total of O(nlogn) time. By Theorem 1, the running time of
LPT is given by Z?ZO% nl O(3¢) - t(£), and according to Lemmas 2 and 3, we have
t(£) = O(2%). Adding everything together yields:

Theorem 2 The online squarefree recognition problem for arbitrarily ordered al-
phabets can be solved in O(nlogn) time, where n is the ending position of the first
square.

2.5. An efficient algorithm for online squarefree recognition over small
general alphabets

For general alphabets, we can use the algorithm in Section 2.4 after replacing the
method that translates the input string 7 into an equivalent string 7”7 over an
integer alphabet. (Translating 7" to T, is then done in the same way as before.)
The new method is similar to the previous one, but instead of storing the distinct
symbols read from T in a balanced binary search tree, we just store the position of
the first occurrence of each distinct symbol in a list B so that |B| will always equal
the cardinality of the current ¥5. More precisely: Initially, let B be the empty list.
After reading each T'[h], scan the current B to check if T'[h] is equal to T[] for
any z in B. If yes, let T'[h] be the index in B of this z. If no, let T'[h] be |B| + 1,
and insert the integer h at the end of B.

The time used to translate T'[1..n] to T'[1..n] is thus O(n - |Z,|), and as before,
the rest of the operations take O(nlogn) time.

Corollary 1 The online squarefree recognition problem for general alphabets can
be solved in O(n - (|3,| + logn)) time, where n is the ending position of the first
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square and |, | is the number of distinct symbols in T[1..n].

According to Corollary 1, the running time of the new method is asymptotically
less than that of the original LPT algorithm if the cardinality of ¥, is o(log2 n).

3. An Algorithm for Dynamic Squarefree Recognition over General
Alphabets

We now present a simple algorithm for the dynamic squarefree recognition problem
over general alphabets. Its input is an initially squarefree string 7', followed by a
series of updates to T. After each update, our algorithm checks if the modified T
is still squarefree, and if not, reports this fact and stops.

Let n be the current length of T'. The allowed updates are of the following form:

e replace(q,’x’), where 1 < ¢ < n, which means “replace the symbol at
position g of T by the symbol x”. The modified T" has length n.

e insert(q,’x’), where 1 < ¢ < n + 1, which means “insert the symbol x
into T at position ¢” (if ¢ = n + 1 then append x to the end of T'). The
modified T has length n + 1.

e delete(q), where 1 < ¢ < n, which means “delete the symbol at position ¢
from T”. The modified T has length n — 1.

The key observation is that after each update, any newly formed square in T
must include the position ¢, which limits the total number of comparisons we need
to make.

For any two positions 4,j of T with 1 < 4,7 < n, define LCSu~1(4,5) as the
longest common suffix of T[1..(i — 1)] and T[1..(j — 1)] and LCPr*1(i, ;) as the
longest common prefix of T'[(i + 1)..n] and T[(j + 1)..n]. We have the following.

Lemma 4 Let T be a string of length n. For any q € {1,2,...,n}, there is a square
in T which includes position q if and only if there exists o ¢’ € {1,2,...,n} with
q' # q such that Tlg] = T|¢'] and [LCSu™*(q,¢)| +|LCPr(g,q )| +1 > |g—¢'|.

Proof. =) Suppose T contains a square S = T[p..(p + 2k — 1)], where
p<qg<p+2k—1 Defineq asq = qg+kifg <p+k—1landasq =qg—k
if p+k < ¢. It is easy to see that ¢ # ¢', Tlq] = T[¢'], and |LCSu=(q,q")| +
|ILCPri(g,q)l 2 k—1=lg—¢'|-1.

<) Suppose there exists a ¢’ € {1,2,...,n} with ¢’ # ¢ such that T[q] = T'[¢']
and |LCSu~Y(q,q")| + |LCPr*l(q,¢')| + 1 > |q¢— ¢'|. Assume without loss of
generality that ¢ < ¢/ (the case ¢ > ¢’ is symmetric). Definep = ¢—|LCSu1(q,q')]
andr = ¢ —|LCSu~Y(g,q')|. By the definition of LCSu ™!, we have T[p..(¢—1)] =
T[r..(¢" — 1)]. Observe that p < g and p < r. There are two possibilities:

e g < r: We rewrite the inequality above as |[LCPr*1(q,q')| > —q+r—1, which
yields T[(g+1)..(r—1)] = T[(¢’+1)..(¢—g+r—1)] by the definition of LCPr+1.
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T: w

LCSu—I(q,q’) : LCPr+1(q,q’) |

Fig. 3. Ilustrating the second part of the proof of Lemma 4 for the case ¢ < r.

After concatenation of the respective substrings, we obtain T[p..(r — 1)] =
Tir..(¢ — g+ r — 1)], i.e., T contains a square, and moreover, this square
includes position ¢ since p < ¢ <r — 1. See Fig. 3 for an illustration.

e r < q: We know that T'[p..q] = T|r..¢']. Thus, T[(p + i)..q) = T[(r +%)..¢'] for
any i € {0,1,...,(¢g—p)}, and in particular, T[(p+qg—r+1)..q| =T[(r+q—
r+1)..q'| sincel < g—r+1 < g—p, which givesus T[(¢— (¢’ —¢)+1)..q] =
T[(g+1)..¢']. Hence, T contains a square which includes position g.

O

Now, to determine if T contains a square after performing an update of the
form replace(q,’x’), insert(q,’x’), or delete(q), we apply Lemma 4. The
resulting algorithm is as follows:

Algorithm Check-if-still-squarefree(q): Let n be the length of the modified T,
and for each ¢’ € {1,2,...,n} with ¢’ # ¢, check if the two conditions T'[q] = T'[¢’]
and |LCSuY(q,q')| + |LCPr*i(q,q')| + 1 > |g — ¢'| hold. If yes for some ¢’, then
T has at least one square; report “T is no longer squarefree” and stop. If no for
all ¢/, then T is still squarefree (this is because any new square in T must include
position g by the key observation above).

To implement Algorithm Check-if-still-squarefree, we use an O(n)-time method
to obtain |[LC'Su~Y(q,q')| and |[LCPrti(q,q')| for all ¢’ € {1,2,...,n} with ¢’ # ¢
as follows. First create a string S = T'[(g + 1)..n] o T'[1..(qg — 1)], where o denotes
concatenation, of length n — 1. Then, compute the length of the longest common
prefix of §[j..(n—1)] and S[1..(n—q)] forall j € {1,2,...,(n—1)} in O(n) total time
based on the method from Section 2 in [11] (alternatively, see Section 1.4 in [7]) for
computing the length of the longest common prefix of S[j..(n —1)] and S[1..(n—1)]
for every j. Clearly, this will give us all the values of |[LCPrt1(q,q')| for ¢ # gq.
To compute the |LC'Su~(q,q')|-values, we repeat the above steps but create S =
T[l..(g — )] o T[(qg + 1)..n)® instead, where AT means the reverse of string A.

Theorem 3 The dynamic squarefree recognition problem for general alphabets can
be solved in O(n) time per update, where n is the current length of the string.

Algorithm Check-if-still-squarefree can be extended to also return a list of all
newly formed squares’ starting and ending positions.
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4. Concluding Remarks

Some interesting open questions are:

e Can the running time of the LPT algorithm [10] be reduced to O(nlogn) for
general alphabets?

e Can the online squarefree recognition problem for constant alphabets be solved
in O(n) time?

o If we allow O(nlogn) time preprocessing, can the query time after each update
for the dynamic version of the problem be reduced to o(n)?

e How efficiently can the online and dynamic versions of the cube (and higher
orders of repetitions) detection problem be solved?
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