
Polynomial-Time Algorithms for the Ordered
Maximum Agreement Subtree Problem

Anders Dessmark, Jesper Jansson, Andrzej Lingas, and Eva-Marta Lundell

Department of Computer Science, Lund University, Box 118, 221 00 Lund, Sweden
{andersd,jj,andrzej,emj}@cs.lth.se

Abstract. For a set of rooted, unordered, distinctly leaf-labeled trees,
the NP-hard maximum agreement subtree problem (MAST) asks for a
tree contained (up to isomorphism or homeomorphism) in all of the input
trees with as many labeled leaves as possible. We study the ordered vari-
ants of MAST where the trees are uniformly or non-uniformly ordered.
We provide the first known polynomial-time algorithms for the uniformly
and non-uniformly ordered homeomorphic variants as well as the uni-
formly and non-uniformly ordered isomorphic variants of MAST. Our
algorithms run in time O(kn3), O(n3 min{nk, n + logk−1 n}), O(kn3),
and O((k + n)n3), respectively, where n is the number of leaf labels and
k is the number of input trees.

1 Introduction

The basic combinatorial problem of finding a largest common subsequence for
a set of sequences (LCS) and the well known problem of finding a maximum
agreement subtree for a set of trees with distinctly labeled leaves (MAST) fall in
the general category of problems of finding the largest common subobject for an
input set of combinatorial objects.

In [7], Fellows et al. in particular studied the largest common subobject prob-
lem constrained to the so called p-sequences, i.e., sequences where each element
occurs at most once. A p-sequence can be seen as an ordered, distinctly leaf-
labeled star tree. In this paper, we study a natural generalization of the largest
common subobject problem for p-sequences in which the objects are allowed
to be arbitrary rooted, ordered trees with distinctly labeled leaves. Since this
problem can be also regarded as a restriction of the MAST problem where tree
ordering is required, we term it the ordered maximum agreement subtree problem.

For an extensive literature and motivations for the LCS and MAST problems,
the reader is referred to [3, 13, 17] and [2, 5, 6, 11, 15, 16], respectively. The NP-
hardness [2] and approximation NP-hardness [4, 10, 11] of the general MAST
problem is one of the motivations for studying its ordered variants in this paper.

1.1 Variants of the Maximum Agreement Subtree Problem

A tree whose leaves are labeled by elements belonging to a finite set S so that no
two leaves have the same label is said to be distinctly leaf-labeled by S. Through-
out this paper, each leaf in such a tree is identified with its corresponding element

S.C. Sahinalp et al. (Eds.): CPM 2004, LNCS 3109, pp. 220–229, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Polynomial-Time Algorithms 221

in S. Let T be a rooted tree distinctly leaf-labeled by a given finite set S. For
any subset S′ of S, T |S′ denotes the tree obtained by first deleting from T all
leaves which are not in S′ and all internal nodes without any descendants in S′

along with their incident edges, and then contracting every edge between a node
having just one child and its child. Similarly, T ||S′ denotes the tree obtained by
deleting from T all leaves which are not in S′ and all internal nodes without any
descendants in S′ along with their incident edges.

In the maximum homeomorphic agreement subtree problem (MHT), the input
is a finite set S and a set T = {T1, ..., Tk} of rooted, unordered trees, where each
Ti ∈ T is distinctly leaf-labeled by S and no Ti ∈ T has a node of degree 1, and
the goal is to find a subset S′ of S of maximum cardinality such that T1|S′ =
... = Tk|S′. In the maximum isomorphic agreement subtree problem (MIT), the
input is a finite set S and a set T = {T1, ..., Tk} of rooted, unordered trees,
where each Ti ∈ T is distinctly leaf-labeled by S, and the goal is to find a subset
S′ of S of maximum cardinality such that T1||S′ = ... = Tk||S′.

An ordered tree is a rooted tree in which the left-to-right order of the children
of each node is significant. The leaf ordering of an ordered, leaf-labeled tree is
the sequence of labels obtained by scanning its leaves from left to right. A set T
of ordered trees distinctly leaf-labeled by S is said to be uniformly ordered if all
trees in T have the same leaf ordering.

We study the following four ordered variants of MHT and MIT:

– The ordered maximum homeomorphic agreement subtree problem (OMHT)
– The ordered maximum isomorphic agreement subtree problem (OMIT)
– The uniformly ordered maximum homeomorphic agreement subtree problem

(UOMHT)
– The uniformly ordered maximum isomorphic agreement subtree problem

(UOMIT)

OMHT and OMIT are defined in the same way as MHT and MIT except that
T is required to be a set of ordered trees. UOMHT and UOMIT are the special
cases of OMHT and OMIT in which T is required to be uniformly ordered. Note
that OMHT and OMIT are the natural generalization of the largest common
subobject problem for p-sequences studied by Fellows et al. in [7].

From here on, n and k denote the cardinalities of S and T , respectively.

1.2 Motivations

In certain evolutionary tree construction situations, one can determine or ac-
curately estimate the leaf ordering of a planar embedding of the true tree by
taking into account other kinds of data such as the geographical distributions
of the species or data based on some measurable quantitative characteristics
(average life span, size, etc). The ordered variants of MHT and MIT might also
arise in graphical representation of evolutionary trees where additional restric-
tions are placed on the leaves (e.g., that they must be ordered alphabetically)
for ease of presentation. In the context of the approximation NP-hardness of

222 Anders Dessmark et al.

MHT and MIT, their ordered restrictions are of theoretical interest in their own
rights. Does the leaf ordering restriction make the problems computationally
feasible? In [9], Ga̧sieniec et al. showed that an analogous ordering restriction on
an NP-hard optimization problem occurring in the construction of evolutionary
trees admits a polynomial-time algorithmic solution. Our results on the ordered
variants of MHT and MIT will further confirm the power of ordering.

1.3 Related Results

Fellows, Hallet, and Stege studied the LCS problem for p-sequences among many
other problems in their interesting article [7], and claimed that they could solve
this problem for k p-sequences with n symbols in time O(kn(k + log n)) 1.

Steel and Warnow [15] presented the first exact polynomial-time algorithms
to solve MHT and its unrooted counterpart UMHT2 when k = 2 and the degrees
are unbounded. Since then, many improvements have been published, the fastest
currently known being an algorithm for MHT with k = 2, invented by Kao,
Lam, Sung, and Ting [12], that runs in O(

√
D n log(2n/D)) time, where D is

the maximum degree of the two input trees. Note that this is O(n log n) for
trees with maximum degree bounded by a constant and O(n1.5) for trees with
unbounded degrees. Finally, for two rooted, ordered trees, a maximum agreement
subtree can be computed in O(n log2 n) time [16].

Amir and Keselman [2] considered the more general case k ≥ 2. They proved
that MHT is NP-hard already for three trees with unbounded degrees, but solv-
able in polynomial time for three or more trees if the degree of at least one of the
trees is bounded by a constant. For the latter case, Farach, Przytycka, and Tho-
rup [6] gave an algorithm with improved efficiency running in O(kn3 +nd) time,
where d is an upper bound on at least one of the input trees degrees; Bryant [5]
proposed a conceptually different algorithm with the same running time.

Hein, Jiang, Wang, and Zhang [11] proved that MHT with three trees with
unbounded degrees cannot be approximated within a factor of 2logδ n in poly-
nomial time for any constant δ < 1, unless NP ⊆ DTIME[2polylog n]. This in-
approximability result also holds for UMHT [11]. Bonizzoni, Della Vedova, and
Mauri [4] showed that it can be carried over to MIT restricted to three trees
with unbounded degrees as well, and that even stronger bounds can be proved
for MIT in the general case. Ga̧sieniec, Jansson, Lingas, and Östlin [10] proved
that MHT is hard to approximate in polynomial time even for instances con-
taining only trees of height 2, and showed that if the number of trees is bounded
by a constant and all of the input trees’ heights are bounded by a constant, then
MHT can be approximated within a constant factor in O(n log n) time.
1 Their algorithm, allowing different interpretations, seems to fail already for x1 =

1234 and x2 = 1342, producing either 12 or 34 instead of 134. Therefore, we were
forced to use a weaker upper time-bound for this problem, given in Lemma 5 in this
paper, in order to derive one of our main results.

2 UMHT is defined like MHT except that all trees are unrooted and T |S′ now denotes
the tree obtained by first deleting from T all nodes (and their incident edges) not on
any path between two leaves in S′, and then contracting every node with degree 2.

Polynomial-Time Algorithms 223

1.4 Our Results and Organization of the Paper

We present the first known polynomial-time algorithms for the uniformly and
non-uniformly ordered homeomorphic variants (UOMHT and OMHT) as well
as the uniformly and non-uniformly ordered isomorphic variants (UOMIT and
OMIT) of the maximum agreement subtree problem. They run in time O(kn3),
O(n3 min{nk, n+logk−1 n}), O(kn3), and O((k+n)n3), respectively. Our results
have been obtained by utilization of deep structural properties of ordered agree-
ment subtrees which allowed for significant pruning of the otherwise unfeasible
number of combinations of subproblems needed for the exact solution.

In Section 2, we introduce some common notation for our algorithms. In
Section 3, we present the algorithm for UOMHT. Section 4 is devoted to the
algorithm for OMHT. Section 5 describes the algorithms for UOMIT and OMIT.

2 Notation

We use the following notation. For any a, b ∈ S, denote by OMHTa,b the problem
OMHT under the additional constraint that for any valid solution S′, the leaf or-
dering of T1|S′ must begin with a and end with b. Define OMITa,b, UOMHTa,b,
and UOMITa,b analogously. Furthermore, let UOMHT(a),(b) be UOMHT re-
stricted to the subset of S consisting of all elements in the interval [a, b] in the
leaf ordering. Note that while a and b are required to belong to any solution to
UOMHTa,b, they are not necessarily included in a solution to UOMHT(a),(b).

We also find it convenient to write S = {a1, ..., an} and in the uniformly
ordered case let al precede ar in the leaf ordering if l < r.

3 A Polynomial-Time Algorithm for UOMHT

In this section, we present an algorithm called All-Pairs that solves the uniformly
ordered maximum homeomorphic agreement subtree problem. Our algorithm
employs dynamic programming to build a table of solutions for UOMHT(al),(ar)

for all pairs of leaves al and ar with l ≤ r, using a procedure called One-Pair.
All-Pairs and One-Pair are listed in Fig. 1 and Fig. 2, respectively.

Given indices l and r, One-Pair first computes UOMHTal,ar and then finds
the solution to UOMHT(al),(ar) by taking the largest of UOMHTal,ar and the
two previously computed optimal solutions to subproblems UOMHT(al),(ar−1)

and UOMHT(al+1),(ar), both stored in the dynamic programming table.
When computing UOMHTal,ar , the algorithm considers the path P between

al and ar and the positions along P where the intervening leaves have their lowest
ancestors. By the lowest ancestor of leaf aj , we mean the node which is the lowest
common ancestor of aj and either al or ar, i.e., the position on P where the path
from aj to the root joins P . By the lowest ancestor edge of leaf aj , we mean the
first edge on the path leading from the lowest ancestor of aj to aj .

For each input tree Ti, let vi be the lowest common ancestor of al and ar. In
Step 1, the intervening leaves are divided into three classes depending on whether

224 Anders Dessmark et al.

Algorithm All-Pairs

Input: An instance of UOMHT.

Output: The subset of leaves in a maximum agreement subtree of T .

for length = 1 to n do

for left = 1 to n − length + 1 do

Compute UOMHT(aleft),(aleft+length−1) by a subroutine call to One-
Pair(left, left + length − 1) and enter the result in the table.

endfor

endfor

return UOMHT(a1),(an)

End All-Pairs

Fig. 1. A dynamic programming algorithm for UOMHT.

their lowest ancestor is inside the path from vi to al, equal to vi itself, or inside
the path from vi to ar. Any leaf that does not belong to the same class in all
input trees can be discarded, since it can not exist in a solution together with
al and ar (Step 2). Next, in Step 3, the remaining intervening leaves are further
processed and divided into sets according to their lowest ancestors so that two
leaves having the same lowest ancestor belong to the same set. The divisions
created by the different trees are merged into sets S1, ..., Sm so that two leaves
belong to the same set Sp if and only if they have the same lowest ancestor
in every tree in T . The leaves in any such set Sp clearly form a consecutive
sequence.

Each set Sp is further divided into subsets in Step 4. As in the previous
division, every input tree is traversed to find the lowest ancestor edge for each
leaf which connects it to the path between al and ar. The resulting divisions
are then merged to create the subsets Sp,1, Sp,2, ... with the property that two
leaves are in the same subset if and only if they have the same lowest ancestor
edge in every tree in T (see Fig. 3). As above, the leaves in such a subset form
a consecutive sequence. It also holds for any subset A ⊆ Sp,q that if A induces
a homeomorphic agreement subtree then the set A ∪ {al, ar} also induces a
homeomorphic agreement subtree. Such a maximum subset A can be looked up
in the table (Step 5). However, two members of two different Sp,q subsets may
have the same lowest ancestor edge in some tree even though no such pair of
leaves can belong to the same solution. Since members of a subset share a lowest
ancestor edge in all trees, a conflict in one tree must hold for all pairs of leaves
induced by the two subsets concerned. Thus, we can represent such a conflict
as an edge in a special graph having the Sp,q sets as vertices and the sizes of
UOMHT solutions looked up in Step 5 as vertex weights (Step 6), and then
compute a maximum weighted independent set in this graph (Step 7).

The maximum subset of leaves, connected to the same lowest ancestor in all
trees, that can be included together with al and ar in a homeomorphic agreement
subtree are now known. Next, we choose the sets to be included in UOMHTal,ar .
This is done in Steps 8 and 9 similarly as for the subsets of a single set. We build a

Polynomial-Time Algorithms 225

Algorithm One-Pair

Input: An instance of UOMHT and the index of two leaves al and ar.

Output: The subset of leaves in a maximum agreement subtree of T restricted
to the set of leaves in the range from al to ar (i.e., UOMHT(al),(ar)).

1 For each Ti ∈ T , divide the leaves {al+1, ..., ar−1} into sets according to the
location of their lowest ancestor on the path between al and ar.

2 Remove every leaf aj , such that all subtrees induced by {al, aj , ar} are not
homeomorphic, from further consideration.

3 Construct the sets S1, ..., Sm of leaves such that two leaves are in the same set
if and only if they are in the same set constructed in Step 1 for all trees in T ,
and furthermore, for any two leaves ai ∈ Sp and aj ∈ Sq , if p < q then i < j.

for p = 1 to m do

4 Construct the sets Sp,1, ..., Sp,mp of leaves such that two leaves are in the
same set if and only if they are connected by the same edge to the path
between al and ar for all trees in T , and furthermore, for any two leaves
ai ∈ Sp,s and aj ∈ Sp,t, if s < t then i < j.

5 for q = 1 to mp do

Sp,q = UOMHT(ai),(aj) where i and j are the smallest and largest
index, respectively, such that ai ∈ Sp,q and aj ∈ Sp,q.

endfor

6 Construct a weighted graph Gp = (Vp, Ep), where Vp = {Sp,1, ..., Sp,mp}
with weights according to their sizes, and Ep contains every pair of subsets
of leaves such that they share a lowest ancestor edge in some Ti ∈ T .

7 Compute the maximum weighted independent set of Gp and let Sp be the
union of the sets in the solution.

endfor

8 Construct a weighted graph G = (V, E) where V is the set {S1, ..., Sm} with
weights according to their sizes and E contains every pair of sets of leaves such
that they are in the same set for some Ti ∈ T .

9 Compute the maximum weighted independent set of G and let W be the union
of the sets in the solution.

10 return The largest of W , UOMHT(al),(ar−1) and UOMHT(al+1),(ar).

End One-Pair

Fig. 2. The subroutine for computing one entry of the dynamic programming table.

graph with the Sp sets as the vertices, with weights according to the solutions to
the maximum weighted independent set problems for the subsets of the sets. The
conflict edges now represent two separate sets sometimes connected to the same
lowest ancestor (regardless of lowest ancestor edge). The maximum weighted
independent set for this graph provides us with the solution to UOMHTal,ar .

Lemma 1. One-Pair solves UOMHT(al),(ar) in O(km) time, with m = r−l+1.

Proof. The correctness follows from the discussion above. As for the time com-
plexity, Steps 1 to 3 can be done in one traversal of each tree in T (this takes
O(km) time). Whenever the ancestor changes, this is recorded in the present

226 Anders Dessmark et al.

al

ar

Ti

S

S

2

3

S1,1 S S S S1,2 4,1 4,2 4,3

v i

Fig. 3. An input tree Ti where the leaves {al+1, .., ar−1} are divided into sets according
to lowest ancestor and lowest ancestor edge.

leaf. After all trees have been traversed, the union of these recorded changes will
divide the leaves into the sought sequence of sets. Another traversal of the trees
in T is sufficient to make the further division in Step 4.

Computing the weights for the subsets is done in O(m) time, as there are
O(m) subsets. The edge sets can also be computed in the course of the traversal,
by noting the lowest index of leaf that so far has shared a lowest ancestor edge
with the current leaf. Since the leaves are uniformly ordered, a conflict with one
leaf must also result in a conflict with all the intervening leaves. Solving the max-
imum weighted independent set problems in Step 7 for the constructed graphs
can be done in linear time by the following dynamic programming procedure:

Process the vertices in the order of leaves contained. Keep a table of the
maximum weight subset of vertices computed thus far. For every new entry
(corresponding to the set Sp,q), compare the entry for set Sp,q−1 with the weight
of the current vertex (|Sp,q|) added to the entry corresponding to Sp,s where s
is the largest index s < q such that there is no conflict between Sp,s and Sp,q,
and choose the larger of the two values.

The edge set in Step 8 can be computed during the initial traversal. The final
maximum weighted independent set problem in Step 9 can be solved in linear
time with a dynamic programming procedure analogous to that of Step 7. ��

Theorem 1. Algorithm All-Pairs solves UOMHT in O(kn3) time.

Proof. There are O(n2) pairs; each pair requires O(kn) time by Lemma 1. ��

4 An Algorithm for OMHT

In this section we present an algorithm for the ordered maximum homeomorphic
agreement subtree problem running in time O(n3 min{nk, n + logk−1 n}).

For each al, ar ∈ S where al precedes ar in the leaf ordering of all trees in T ,
or al = ar, we consider the subproblem OMHTal,ar (if al = ar, the solution
to OMHTal,ar is trivially the singleton {al}). Our algorithm for OMHTal,ar is
similar to that for UOMHTal,ar , again focusing on the path between al and ar.
Let vi be the lowest common ancestor of al and ar in Ti. As before, the inter-
vening leaves are divided into three classes depending on whether their lowest

Polynomial-Time Algorithms 227

ancestor is inside the path from vi to al, equal to vi, or inside the path from vi

to ar. Any leaf that does not belong to the same class in all trees is immediately
discarded as it cannot exist in a solution together with al and ar.

With each of the remaining intervening leaves b, we associate the point p(b) =
(p(b)1, ..., p(b)k) in N

k, where for i = 1, ..., k, p(b)i is defined as the distance
between al and the lowest ancestor of b on the path from al to ar in Ti. With each
of the points p, we associate the set Sp of remaining leaves b for which p = p(b).
In turn, with each leaf b ∈ Sp, we associate another point q(b) = (q(b)1, ..., q(b)k)
in N

k, where for i = 1, ..., k, q(b)i is the rank of the lowest ancestor edge of b on
the path from al to ar in Ti. We say that a point x in N

k strictly dominates a
point y in N

k if each coordinate of x is greater than the corresponding one of y.

Lemma 2. A pair of remaining leaves b, d, where p(b) 	= p(d), can jointly with
al and ar be a subset of a leaf set inducing a homeomorphic agreement subtree
for T if and only if p(b) strictly dominates p(d) or vice versa.

Lemma 3. A pair of remaining leaves b, d ∈ Sp, where q(b) 	= q(d), can jointly
with al and ar be a subset of a leaf set inducing a homeomorphic agreement
subtree for T if and only if q(b) strictly dominates q(d) or vice versa.

Following the idea of double set subdivision from the previous section, we
associate with each of the points q a set Sp,q of remaining leaves b ∈ Sp for which
q = q(b). We let the weight of each such point q be the weight the maximum
cardinality of a solution to OMHTc,d, where c, d ∈ Sp,q and c and d occur in
the same order in the leaf ordering of all trees in T .

The points q can be interpreted as degenerate k-trapezoids [8]. By Lemma 3,
it suffices to find a maximum weighted independent set in the k-trapezoid graph
induced by the points q, i.e., in the intersection graph of the k-trapezoids, in
order to find a largest subset of Sp that can jointly with al and ar be a subset
of a leaf set inducing a homeomorphic agreement subtree for T .

Lemma 4. [8] A maximum weighted independent set in a k-trapezoid graph on
n vertices given with its box representation can be found in O(n logk−1 n) time.

Consequently, we assign as the weight of p the cardinality of such a largest
subset. Analogously, the points p can be interpreted as degenerate k-trapezoids.
By Lemma 2, it is sufficient to find a maximum weighted independent set in the
k-trapezoid graph induced by the points p to solve OMHTal,ar .

When k is large, the above method for finding the maximum weighted in-
dependent set in a k-trapezoid graph is super-polynomial. Therefore, for large
values of k, we reduce the latter problem to a restricted version of LCS. Given k
sequences, each consisting of a permutation of the elements in a set Σ, the prob-
lem is to find the longest sequence that is a subsequence of all input sequences.

Lemma 5. Restricted LCS can be solved in O(kn2) time, where n = |Σ|.

Proof. We first compute and store the ranks of all elements in all sequences in an
n× k table, which takes O(kn) time. For any a, b ∈ Σ, we can then determine if

228 Anders Dessmark et al.

a occurs before b in all sequences, if b occurs before a in all sequences, or neither.
Build a directed graph G = (Σ, E) where (a, b) ∈ E if and only if a occurs before
b in all sequences. G is clearly acyclic and can be constructed in O(kn2) time. A
topological sort on G yields the longest directed path and this corresponds to a
longest common subsequence. This can be done within the given time bound. ��

In our reduction, each point corresponds to an element in Σ and each input
tree to a sequence of elements. The reduction must take into account two diffi-
culties: our points are weighted and two points may have the same coordinate
for some input tree. The latter is handled by representing each input tree by two
sequences. If a set of points share a coordinate for a tree, we put them in arbi-
trary order with respect to each other in the first sequence and reverse this order
in the second sequence to ensure that no pair of such points can occur together
in the solution. The weights of the points are accounted for by replacing an ele-
ment a of weight w in all the 2k sequences by w consecutive elements a1, ..., aw,
uniformly ordered throughout the sequences. Since the weights correspond to
disjoint sets of leaves, the length of the sequences will be at most n.

The construction of the set of the remaining leaves as well as the construction
of the set of points p(b) and q(b) can be carried out in total time O(nk), the
latter by using lexicographic sort (see for instance [1]). The weights of the points
q can be determined in total time O(n2). The two level application of Lemma 4
or Lemma 5 in order to determine maximum weight independent sets of points q
and p takes O(n min{kn, logk−1 n}) time. Hence, we obtain the following lemma.

Lemma 6. If, for each pair am, aq which follows al and precedes ar in the leaf
ordering of all trees in T , the cardinalities of solutions to OMHTam,aq are al-
ready stored then OMHTal,ar can be solved in O(n min{kn, n+ logk−1 n}) time.

There are O(n2) subproblems OMHTal,ar . For any am, aq in Lemma 6, the
quadruple al, am, aq, ar is in particular a subsequence of the leaf ordering in the
first tree. Hence, it suffices to solve the subproblems in order of non-decreasing
distance between al and ar in the leaf ordering of the first tree to solve them
with dynamic programming by Lemma 6. We thus obtain our next main result.

Theorem 2. OMHT can be solved in O(n3 min{nk, n + logk−1 n}) time.

5 Polynomial-Time Solutions for UOMIT and OMIT

Our polynomial-time algorithms for UOMHT and OMHT can easily be adapted
to UOMIT and OMIT, respectively. In order to solve the corresponding sub-
problems UOMITal,ar and OMITal,ar , we rely on the following lemma.

Lemma 7. (Smolenskii [14]) Two labeled trees are isomorphic if and only if the
distance between any two leaves with corresponding labels is the same.

By Lemma 7, we can require the subtrees induced by the leaves al and ar to
be pairwise isomorphic. In particular, the paths connecting al with ar must be of

Polynomial-Time Algorithms 229

equal length. Also, any relevant remaining leaf must have the same distances to al

and ar in all input trees. This immediately implies that such a leaf has the same
lowest ancestor on the path connecting al with ar in all the input trees. Hence,
any pair of such leaves with different lowest ancestors on the aforementioned
path can occur in a feasible solution to UOMITal,ar or OMITal,ar , respectively.
Consequently, the corresponding weighted graphs have no edges and there is no
need to use special algorithms for computing maximum weighted independent
sets. The time analysis simplifies and we obtain the following theorems.

Theorem 3. UOMIT can be solved in O(kn3) time.

Theorem 4. OMIT can be solved in O((k + n)n3) time.

References

1. A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of Computer Algo-
rithms. Addison-Wesley, 1974.

2. A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary
trees: Metrics and efficient algorithms. SIAM J. Computing, 26(6):1656–1669, 1997.

3. H. Bodlaender, R. Downey, M. Fellows, and T. Wareham. The parameterized com-
plexity of sequence alignment and consensus. Theor. Comput. Sci., 147:31–54, 1995.

4. P. Bonizzoni, G. Della Vedova, and G. Mauri. Approximating the maximum iso-
morphic agreement subtree is hard. International Journal of Foundations of Com-
puter Science, 11(4):579–590, 2000.

5. D. Bryant. Building Trees, Hunting for Trees, and Comparing Trees: Theory and
Methods in Phylogenetic Analysis. PhD thesis, University of Canterbury, 1997.

6. M. Farach, T. Przytycka, and M. Thorup. On the agreement of many trees. In-
formation Processing Letters, 55:297–301, 1995.

7. M. Fellows, M. Hallett, and U. Stege. Analogs & duals of the MAST problem for
sequences & trees. Journal of Algorithms, 49(1):192–216, 2003.

8. S. Felsner, R. Müller, and L. Wernisch. Trapezoid graphs and generalizations,
geometry and algorithms. Discrete Applied Mathematics, 74:13–32, 1997.

9. L. Ga̧sieniec, J. Jansson, A. Lingas, and A. Östlin. Inferring ordered trees from
local constraints. In proceedings of CATS’98, vol. 20(3) of Australian Computer
Science Communications, pages 67–76. Springer-Verlag, 1998.

10. L. Ga̧sieniec, J. Jansson, A. Lingas, and A. Östlin. On the complexity of construct-
ing evolutionary trees. Journal of Combinatorial Optimization, 3:183–197, 1999.

11. J. Hein, T. Jiang, L. Wang, and K. Zhang. On the complexity of comparing
evolutionary trees. Discrete Applied Mathematics, 71:153–169, 1996.

12. M.-Y. Kao, T.-W. Lam, W.-K. Sung, and H.-F. Ting. An even faster and more
unifying algorithm for comparing trees via unbalanced bipartite matchings. Journal
of Algorithms, 40(2):212–233, 2001.

13. D. Maier. The complexity of some problems on subsequences and supersequences.
Journal of the ACM, 25(2):322–336, 1978.

14. E. A. Smolenskii. Jurnal Vicisl. Mat. i Matem. Fiz, 2:371–372, 1962.
15. M. Steel and T. Warnow. Kaikoura tree theorems: Computing the maximum

agreement subtree. Information Processing Letters, 48:77–82, 1993.
16. W.-K. Sung. Fast Labeled Tree Comparison via Better Matching Algorithms. PhD

thesis, University of Hong Kong, 1998.
17. V. G. Timkovsky. Complexity of common subsequence and supersequence problems

and related problems. Cybernetics, 25:1–13, 1990.

	1 Introduction
	1.1 Variants of the Maximum Agreement Subtree Problem
	1.2 Motivations
	1.3 Related Results
	1.4 Our Results and Organization of the Paper

	2 Notation
	3 A Polynomial-Time Algorithm for UOMHT
	4 An Algorithm for OMHT
	5 Polynomial-Time Solutions for UOMIT and OMIT
	References

