
Constructing a Smallest Refining Galled
Phylogenetic Network

Trinh N.D. Huynh, Jesper Jansson, Nguyen Bao Nguyen, and Wing-Kin Sung

School of Computing, National University of Singapore,
3 Science Drive 2, Singapore 117543

{huynhngo, jansson, nguyenba, ksung}@comp.nus.edu.sg

Abstract. Reticulation events occur frequently in many types of species.
Therefore, to develop accurate methods for reconstructing phylogenetic
networks in order to describe evolutionary history in the presence of
reticulation events is important. Previous work has suggested that con-
structing phylogenetic networks by merging gene trees is a biologically
meaningful approach. This paper presents two new efficient algorithms
for inferring a phylogenetic network from a set T of gene trees of arbitrary
degrees. The first algorithm solves the open problem of constructing a
refining galled network for T (if one exists) with no restriction on the
number of hybrid nodes; in fact, it outputs the smallest possible solution.
In comparison, the previously best method (SpNet) can only construct
networks having a single hybrid node. For cases where there exists no
refining galled network for T , our second algorithm identifies a mini-
mum subset of the species set to be removed so that the resulting trees
can be combined into a galled network. Based on our two algorithms,
we propose two general methods named RGNet and RGNet+. Through
simulations, we show that our methods outperform the other existing
methods neighbor-joining, NeighborNet, and SpNet.

1 Introduction

A phylogenetic network is a generalization of a phylogenetic tree that allows
internal nodes to have more than one parent. Phylogenetic networks are used to
describe the evolutionary history of species when traditional tree-based models
are known to be insufficient due to the occurrence of reticulation events such
as hybrid speciation or horizontal gene transfer [2, 6, 8, 9, 11] that tend to occur
frequently in certain types of organisms [6, 9]. Phylogenetic networks are also
used in order to visualize several conflicting phylogenetic trees at the same time
to represent ambiguity and to make it easier to identify parts of the trees that
agree [1, 3, 4], which is helpful because different trees constructed from different
datasets often contain parts that contradict each other and because many tree
construction methods (e.g., bootstrapping) produce collections of trees rather
than a single tree. Hence, development of reliable and efficient methods for con-
structing phylogenetic networks is crucial in the study of phylogenetics.

S. Miyano et al. (Eds.): RECOMB 2005, LNBI 3500, pp. 265–280, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

266 T.N.D. Huynh et al.

Several phylogenetic network reconstruction methods have been proposed
recently. The different methods use different types of input data. Bryant and
Moulton [1] proposed a method called NeighborNet to construct a phylogenetic
network from a given distance matrix for the species. Gusfield et al. [2] and
Wang et al. [11] showed how to construct a galled phylogenetic network (defined
below) given character-based data. Jansson, Nguyen and Sung [5] considered how
to infer a phylogenetic network which is consistent with a given set of rooted
triplets. Huson et al. [4] and Nakhleh et al. [9] proposed to infer phylogenetic
networks and galled phylogenetic networks, respectively, by combining a given
set of gene trees, obtained, e.g., via applying maximum likelihood to sequence
data. This paper follows the approach of Huson et al. and Nakhleh et al. since
combining gene trees into a phylogenetic network is a promising direction. In
addition, this approach is biologically sound, as stated below.

Maddison [7] observed that if a phylogenetic network for a set of species con-
tains a single hybrid node (i.e., a node with indegree greater than one) then
each gene present in all of the species must evolve according to one of the two
trees embedded in the network. (Maddison also described how to construct such
a phylogenetic network from two given gene trees and hypothesized that this
method can be extended to construct phylogenetic networks containing more
than just one hybrid node.) Based on this observation, Nakhleh, Warnow, and
Linder [9] considered the following general approach to reconstructing a phylo-
genetic network for a set L of species from two given gene datasets for L:

For each of the two gene datasets, infer a gene tree; next, if the two trees
are identical then return that tree, else find a phylogenetic network with
as few hybrid nodes as possible that contains both trees.

In particular, Nakhleh et al. proposed two efficient algorithms for reconstruct-
ing a structurally restricted phylogenetic network from two given gene trees,
corresponding to the last step above.

The first algorithm of Nakhleh et al. [9] constructs a galled phylogenetic net-
work, if one exists, having the minimum number m of hybrid nodes that induces
the two given binary phylogenetic trees on a leaf set L. It runs in O(mn) time,
where n = |L|. The algorithm does not work when there exists no galled network
which induces both trees in the input, for example due to errors in the estimated
gene trees. The second algorithm of Nakhleh et al. [9] is designed to handle this
issue. It assumes that the input is two (not necessarily binary) phylogenetic
trees t1 and t2, obtained by first inferring a set of “good” trees for each of the
two gene datasets (e.g., by using maximum parsimony or maximum likelihood)
and then taking the strict consensus of each set. The algorithm outputs in O(n)
time a galled phylogenetic network N with a single hybrid node (if one exists)
that refines t1 and t2, meaning that N contains as induced trees two binary
phylogenetic trees T1 and T2 such that t1 and t2 are contractions of T1 and T2.

The method SpNet (short for “Species Network”) proposed in [9] is a method
for reconstructing phylogenetic networks from sequence datasets that uses maxi-
mum likelihood to infer the gene trees and then applies the algorithm above. The
simulations studies in [9] indicate that SpNet performs very well compared to

Constructing a Smallest Refining Galled Phylogenetic Network 267

other existing methods (e.g., neighbor-joining [10] and NeighborNet [1]). How-
ever, their algorithm which SpNet is based on can only construct a phylogenetic
network with one hybrid node (if such a network exists), which is a severe re-
striction. The case that is more likely to occur in practice, i.e., to construct a
galled phylogenetic network having more than one hybrid node, was left as an
important open problem.

We present a simple and efficient algorithm that solves the main open problem
of Nakhleh et al. [9]. 1 It takes as input two phylogenetic trees of arbitrary degree
with the same leaf set, and outputs a galled phylogenetic network (if one exists)
which refines both of them. In fact, whenever such a network exists, our algorithm
returns a refining galled phylogenetic network having the minimum possible
number of hybrid nodes. Moreover, our algorithm can easily be extended to more
than two input trees, whereas both algorithms of Nakhleh et al. will only work for
exactly two input trees. We term the corresponding computational problem the
smallest refining galled network (SRGN) problem. We also give an algorithm for
situations where there exists no refining galled phylogenetic network for the given
set of trees and we instead need to identify a largest possible subset L′ of the leaf
set such that if the input trees are topologically restricted to leaves in L′, then
they can be combined into a refining galled network (for example by using our
algorithm for the SRGN problem mentioned above). We call this new problem
the maximum galled network-compatibility (MGNC) problem. Our algorithm for
the MGNC problem runs in polynomial time as long as the number of input trees
is bounded by a constant and their maximum degree is at most logarithmic in
the number of leaves. Finally, we apply our two proposed main algorithms for
the SRGN problem and the MGNC problem to obtain two general methods for
inferring galled networks from gene sequence datasets which we name RGNet
and RGNet+. We show by practical simulation studies that RGNet outperforms
the other existing methods neighbor-joining, NeighborNet, and SpNet, while
RGNet+ can be used even when the data does not fit into a galled network.

1.1 Problem Definitions

A phylogenetic tree is a rooted, unordered tree whose leaves are distinctly la-
beled. A phylogenetic network is a generalization of a binary phylogenetic tree
formally defined as a rooted, connected, directed acyclic graph in which: (1) ex-
actly one node has indegree 0 (the root), and all other nodes have indegree 1 or 2;
(2) all nodes with indegree 2 (referred to as hybrid nodes) have outdegree 1, and

1 An alternative approach to solving this problem may be by constructing the set R
of all rooted triplets that are consistent with at least one of the two given trees T1

and T2 and then applying the algorithm of [5]. However, note that the algorithm
in [5] requires at least one rooted triplet to be specified for each {a, b, c} ⊆ L, so this
method might not work when T1 and T2 are non-binary. Furthermore, the running
time would be O(kn3) which is impractical for large n. Also note that an arbitrary
galled network N which is consistent with R does not always induce T1 and T2, so
extra care would need to be taken to ensure the correctness of this approach.

268 T.N.D. Huynh et al.

all other nodes have outdegree 0 or 2; and (3) all nodes with outdegree 0 (the
leaves) are distinctly labeled. For any phylogenetic network N , let rn(N) be the
number of hybrid nodes in N . Next, let U(N) be the undirected graph obtained
from N by replacing each directed edge by an undirected edge. N is said to be a
galled phylogenetic network (or galled network, for short) if all cycles in U(N) are
node-disjoint. Galled networks are an important type of phylogenetic networks
suitable for describing evolutionary history when the frequency of reticulation
events is moderate (see [2] for a discussion), and are also known in the liter-
ature as topologies with independent recombination events [11], galled-trees [2],
gt-networks [9], and level-1 phylogenetic networks [5].

Let N be a phylogenetic network and let T be a phylogenetic tree. T is said
to be an induced tree of N (symmetrically, N is said to induce T) if T can
be obtained from N by deleting a set of edges and then, for every node with
outdegree 1 and indegree less than 2, contracting its outgoing edge.

Let T and t be two (not necessarily binary) phylogenetic trees. t is called
a contraction of T if t can be obtained from T by performing a series of edge
contractions. In this case, T is also said to refine t. A phylogenetic network N
refines a phylogenetic tree t if N induces a binary phylogenetic tree T such that
T refines t. Two phylogenetic trees t1 and t2 are called tree-compatible (or just
compatible) if there exists a phylogenetic tree which refines both t1 and t2, or
galled network-compatible if there exists a galled network which refines t1 and t2.

For any phylogenetic network N with a leaf set L and a subset L′ ⊆ L, the
topological restriction of N to L′, denoted by N |L′, is defined as the phylogenetic
network obtained by first deleting all nodes which are not on any directed path
from the root to a leaf in L′ along with their incident edges, and then, for
every node with outdegree 1 and indegree less than 2, contracting its outgoing
edge (any resulting set of multiple edges between two nodes is replaced by a
single edge). Given a set N of phylogenetic networks with a leaf set L and a
subset L′ ⊆ L, we let N |L′ denote the set {N |L′ : N ∈ N}.

We define the smallest refining galled network (SRGN) problem as follows:
Given a set T = {t1, t2, . . . , tk} of phylogenetic trees of arbitrary degree having
a leaf set L, construct a galled phylogenetic network N with leaf set L (if one
exists) that refines every ti ∈ T and minimizes rn(N). The maximum galled
network-compatibility (MGNC) problem is: Given a set T = {t1, t2, . . . , tk} of
phylogenetic trees of arbitrary degree having a leaf set L, compute a maximum
subset L′ of the leaf set L such that T |L′ has a refining galled network. In the
rest of the paper, we let n and k denote the cardinality of L and T , respectively,
in the problem definitions above and let d denote the maximum degree (i.e., the
maximum number of children of any node) of all trees in T .

1.2 Our Contributions

In this paper, we first present a polynomial-time algorithm for the SRGN prob-
lem restricted to two input trees. Thus, we are able to solve the open problem
posed in [9]. The running time of our new algorithm is O(n2). Next, we show
how to extend our algorithm from 2 to k input trees to run in O(k2n2) time.

Constructing a Smallest Refining Galled Phylogenetic Network 269

When a set of phylogenetic trees cannot be combined into a galled phyloge-
netic network which refines each of them, it is useful to remove as few leaves as
possible from the leaf set of the trees so that the resulting trees admit a solu-
tion. Therefore, we also consider the optimization problem MGNC. We give an
algorithm that solves the MGNC problem in O(23kdn2k) time.

Based on our algorithm for the SRGN problem, we propose a new method for
inferring a galled phylogenetic network from gene sequence datasets which we
name RGNet. We combine RGNet with our algorithm for the MGNC problem
to obtain an even more general method named RGNet+, and demonstrate the
usefulness of our methods by evaluating and comparing their accuracy to those
of several existing methods through extensive simulation studies.

2 Terminology and Notation

Let N be a phylogenetic network with a hybrid node h. Every ancestor s of h such
that h can be reached using two disjoint directed paths starting at the children
of s is called a split node of h. If s is a split node of h then any path starting at s
and ending at h is called a merge path of h. From the above, it follows that in
a galled network, each split node corresponds to exactly one hybrid node, and
each hybrid node has exactly one split node.

Given a galled network N , we write Λ(N) to denote the set of leaf labels
in N and s(N) to denote the set of children of the root of N . Given a node u in
N , we write child(u) to denote the set of children of u and N [u] to denote the
subnetwork of N rooted at u, i.e., the minimal subgraph of N which includes
all nodes and directed edges of N reachable from u. N [u] is said to be attached
to a merge path P in N if u does not belong to P but u is a child of a node
belonging to P . If N ′ is a subnetwork of N then N \ N ′ is the network obtained
by removing N ′ (and all incident edges) from N , and then, for every node with
outdegree 1 and indegree less than 2, contracting its outgoing edge.

Given a tree T and a node v in T , for any nonempty subset A � child(v),
we write T [v, A] to denote the subtree obtained from T [v] by removing all leaves
that are not reachable from any node in A and all incident edges. We call T [v, A]
a restricted subtree rooted at v in T . Finally, T [A] is short for T [v, A] if v is the
root of N .

3 Solving the SRGN Problem

This section solves the SRGN problem in O(k2n2) time. For explanation of the
algorithm, we solve the problem when k = 2. Some technical lemmas which are
needed to prove our main result can be found in Section 4 and Section 5.

Definition 1. Given two trees T1 and T2 with leaf set L, T1 and T2 admit a leaf
set bipartition (X, Y) of L if, for i = 1, 2, there is a partition (Ai, Bi) of s(Ti)
such that X = Λ(Ti[Ai]) and Y = Λ(Ti[Bi]). (See Figure 3(b) for an example.)

270 T.N.D. Huynh et al.

Algorithm BuildGalledNetwork
Input:Two trees T1 and T2 leaf-labeled by L.
Output:A SRGN N for T1 and T2, if exists.

1 if T1 and T2 admits a leaf set bipartition (X, Y) then
1.1 Let NX = BuildGalledNetwork(T1|X, T2|X) and NY =

BuildGalledNetwork(T1|Y, T2|Y).
1.2 If any of NX and NY is null, return null.
1.3 Return N obtained by attaching both NX and NY to a common root.

elseif T1 and T2 admits a leaf set tripartition (X, Y, Z) then
1.4 For i = 1, 2, let ui be the root of Ti|Y in Ti.
1.5 Let NX = BuildSide(T1|X, T2|X, u2), NZ = BuildSide(T2|Z, T1|Z, u1),

NY = BuildGalledNetwork(T1|Y, T2|Y).
1.6 If any of NX , NY , NZ is null, return null.
1.7 Let N ′ be the network formed by attaching NX and NZ to a common root.
1.8 Let wX and wZ be the nodes in N ′, where Λ(N ′[wX]) = Λ(T2[u2]) ∩ X and

Λ(N ′[wZ]) = Λ(T1[u1])∩Z, and let vX and vZ be the parent of wX and wZ ,
respectively.

1.9 For i = X, Z, create a new node qi by subdividing the edge (vi, wi).
1.10 Create a new node h, make h a child of both qX and qZ , and add an edge

from h to the root of NY .
1.11 Let N be the resulting network and return N .

endif
End BuildGalledNetwork

Fig. 1. Framework for constructing phylogenetic network

Algorithm BuildSide
Input:Two trees T1 and T2 and a node u in T2, where T1 is side compatible

with (T2, u).
Output:A SRGN N for T1 and T2, where there is no split node on the path from

the root of N to a node v, excluding v, where Λ(N [v]) = Λ(T2[u]).

1 If u is the root of T2, return BuildGalledNetwork(T1, T2).
2 Find leaf set bipartition (X, Y) admitted by T1 and T2 where T2|X contains u.
3 If there is no such partition, return null.
4 Let N1 =BuildSide(T1|X, T2|X, u) and N2 =BuildGalledNetwork(T1|Y, T2|Y).
5 If any of N1 and N2 is null, return null.
6 Return N obtained by attaching both N1 and N2 to a common root.
End BuildSide

Fig. 2. Algorithm BuildSide

Definition 2. Given two trees T1 and T2 with leaf set L and u be a node in T2.
We say that T1 is side compatible with (T2, u) if either (1) u is the root of T2; or
(2) there is a restricted subtree t1 rooted at the root of T1 and a restricted subtree

Constructing a Smallest Refining Galled Phylogenetic Network 271

T1

T2

u

N

v

(a)

T1

T2

N

X Y

(b)

A1 B1

A2 B2

T1

T2

N

X Y Z

(c)

A1 B1

A2 B2

T1

T2

N

X Y Z=∅

(d)

A1 B1

A2

Fig. 3. (a) The left figure shows an example of T1 and T2 such that T1 is side compatible
with (T2, u). Sets of leaves with the same pattern in both trees are identical. Based
on Lemma 2, if T1 and T2 are galled network-compatible, then there exists a SRGN
N for T1 and T2 having no split node on the path from the root to the parent of v,
where Λ(N [v]) = Λ(T2[u]). (b) (X, Y) is a leaf set bipartition admitted by T1 and T2.
By Lemma 4, there exists a SRGN N for T1 and T2 that satisfies (X, Y). (c) (X, Y, Z)
is a leaf set tripartition admitted by T1 and T2. Note that Y is the set of leaves of some
restricted subtrees in both T1 and T2. By Lemma 5, there exists a SRGN N for T1 and
T2 that satisfies (X, Y, Z). (d) This figure is similar to (c) except that Z = ∅

t2 rooted at the root of T2, where t2 does not contain u, such that Λ(t1) = Λ(t2)
and T1 \ t1 is side compatible with (T2 \ t2, u). (see Figure 3(a).)

Given that T1 is side compatible with (T2, u), we have the following properties.

Lemma 1. Given that T1 is side compatible with (T2, u). Then T1 and T2 admit
a leaf set bipartition. Furthermore, for any leaf set bipartition (X, Y) admitted
by T1 and T2, where T2|X contains u, T1|X is side compatible with (T2|X, u).

Lemma 2. Given that T1 is side compatible with (T2, u). Suppose T1 and T2
are galled network-compatible, then there exists a SRGN N for T1 and T2, where
there is a node v in N such that Λ(N [v]) = Λ(T2[u]) and there is no split node
on the path from the root of N to v, excluding v.

Proof. An algorithm for building such an N is shown in Figure 2. That is
N =BuildSide(T1, T2, u). Its correctness comes from Lemma 1 and Lemma 7. ��

Definition 3. Given two trees T1 and T2 with leaf set L. T1 and T2 admit a
leaf set tripartition of L into (X, Y, Z) if there exist a partition (A1, B1) of

272 T.N.D. Huynh et al.

s(T1), a partition (A2, B2) of s(T2), a restricted subtree t1 rooted at some node
u1 in T1, where Λ(t1) ⊆ Λ(T1[B1]), and a restricted subtree t2 rooted at some
node u2 in T2, where Λ(t2) ⊆ Λ(T2[A2]), such that (1) Y = Λ(t1) = Λ(t2),
X = Λ(T1[A1]) = Λ(T2[A2] \ t2) and Z = Λ(T1[B1] \ t1) = Λ(T2[B2]); (2) T1[A1]
is side compatible with (T2[A2] \ t2, u2); and (3) T2[B2] is side compatible with
(T1[B1] \ t1, u1). See Figure 3(c)(d) for an example.

Definition 4. Consider a galled network N leaf-labeled by L. N satisfies a par-
tition (X, Y) of L if the root of N is a non-split node and X and Y are the
sets of leaves in the two subnetworks attached to the root (see Figure 3(b)). N
satisfies a partition (X, Y, Z) of L if the root of N is a split node, Y is the set
of leaves of the subnetwork attached to the corresponding hybrid node, and X
and Z are the set of leaves of the subnetworks attached to the two corresponding
merge path (see Figure 3(c)(d)).

Definition 5. Given a galled network N satisfying a leaf set partition (X, Y, Z).
We say that N is non-skew if both X and Z are nonempty, otherwise it is skew.
(See Figure 3(c)(d) for examples.)

Below three lemmas describe the properties of both leaf set bipartition and
leaf set tripartition.

Lemma 3. If T1 and T2 admit neither a leaf set bipartition nor a leaf set tri-
partition, then there is no refining galled network for T1 and T2.

Lemma 4. Consider two trees T1 and T2 leaf-labeled by L. A leaf set bipartition
(X, Y) admitted by T1 and T2, if exists, can be computed in O(n) time. Further-
more, if T1 and T2 are galled network-compatible, then there is a SRGN for T1
and T2 that satisfies (X, Y).

Proof. Follows from Lemmas 7 and 8. ��

Lemma 5. Consider two trees T1 and T2 which do not admit any leaf set bipar-
tition. A leaf set tripartition (X, Y, Z) admitted by T1 and T2, if exists, can be
computed in O(n) time. Furthermore, if T1 and T2 are galled network-compatible,
there is a SRGN for T1 and T2 that satisfies (X, Y, Z).

Proof. Follows from Lemmas 10, 13. ��

Based on the above lemmas, a SRGN for T1 and T2 can be computed by
Algorithm BuildGalledNetwork as shown in Figure 1. If T1 and T2 admit a leaf
set bipartition (X, Y), the algorithm first builds recursively the SRGN NX and
NY for (T1|X, T2|X) and (T1|Y, T2|Y) respectively. Then, based on Lemma 4,
we return the network formed by attaching NX and NY by a common root.

Otherwise, the algorithm checks if T1 and T2 admit a leaf set tripartition
(X, Y, Z). If yes, it builds a SRGN N for T1 and T2 that satisfies (X, Y, Z) by
following Step 1.4-1.11. It does this by recursively building a SRGN NX for
(T1|X, T2|X), a SRGN NZ for (T1|Z, T2|Z), and a SRGN NY for (T1|Y, T2|Y).

Constructing a Smallest Refining Galled Phylogenetic Network 273

NX , NY , and NZ are combined into N such that each of NX and NZ constitutes
a merge path from the root of N to the corresponding hybrid node and NY is
the subnetwork rooted at the hybrid node. Since N is a galled network, NX and
NZ must be constructed such that there is no split node on both merge paths.
Thus, by Lemma 2, the algorithm calls BuildSide to construct NX and NZ .

Otherwise, by Lemma 3, there is no galled network refining T1 and T2.
Note that in Step 1.4-1.11, the algorithm assumes both X and Z are nonempty.

But a slight technical change can be made to remove this assumption.
In summary, we have the following theorem.

Theorem 1. Given two trees T1 and T2, a SRGN for T1 and T2 can be computed
by Algorithm BuildGalledNetwork in O(n2) time.

The algorithm can be extended to more than two trees.

Theorem 2. The SRGN problem can be solved in O(k2n2) time.

4 Computing the Leaf Set Bipartition of T1 and T2

This section is devoted to prove Lemma 4.

4.1 Relationship Between Leaf Set Bipartition and SRGN

Suppose T1 and T2 are galled network-compatible. This section shows that if
there exists a leaf set bipartition (X, Y) admitted by T1 and T2, then there is a
SRGN for T1 and T2 that satisfies (X, Y).

Lemma 6. Let N be a SRGN for T1 and T2. For any hybrid node h of N , we
have Λ(N [h]) ⊆ Λ(T1[a]) for some a ∈ s(T1) or Λ(N [h]) ⊆ Λ(T2[b]) for some
b ∈ s(T2).

Lemma 7. Suppose T1 and T2 are galled network-compatible. Assume T1 and
T2 admit a leaf set bipartition (X, Y). Then, we can construct a SRGN N for
T1 and T2 that satisfies (X, Y).

Proof. Let NX and NY be SRGN for (T1|X, T2|X) and (T1|Y, T2|Y), respectively.
Let N be the network formed by attaching NX and NY to a common root, then
N satisfies (X, Y). By contrary, assume there is a SRGN N∗ for T1 and T2 and
rn(N∗) < rn(N). For every hybrid node h ∈ N∗, by Lemma 6, we conclude that
either Λ(N∗[h]) ⊆ X or Λ(N∗[h]) ⊆ Y . Hence, the set of hybrid nodes in N∗|X
and N∗|Y should be disjoint. In other word, rn(N∗|X) + rn(N∗|Y) ≤ rn(N∗).
As rn(NX) ≤ rn(N∗|X) and rn(NY) ≤ rn(N∗|Y), we have rn(N) = rn(NX) +
rn(NY) ≤ rn(N∗). Thus, we arrived at contradiction and the lemma follows. ��

4.2 Linear Time Algorithm for Computing a Leaf Set Bipartition

Next, we describe how to compute a leaf-set bipartition admitted by T1 and T2
in O(n) time. Our computation is based on the bipartite graph G(T1, T2) where

274 T.N.D. Huynh et al.

s(T1) and s(T2) are the vertex set on the left and on the right, respectively. In
addition, (u, v) is an edge in G(T1, T2) if and only if u ∈ s(T1), v ∈ s(T2) and
Λ(T1[u]) ∩ Λ(T2[v]) �= ∅. Note that G(T1, T2) can be constructed in O(n) time.
A partition (X, Y) is a leaf set bipartition admitted by T1 and T2 if and only
if G(T1, T2) can be divided into two disjoint subgraphs G1 and G2 such that
X = ∪(u,v)∈E(G1)Λ(T1[u]) and Y = L \ X. Thus we get the following lemma.

Lemma 8. A leaf set bipartition admitted by T1 and T2, if exists, can be com-
puted in O(n) time.

5 Computing the Leaf Set Tripartition of T1 and T2

This section is devoted to prove Lemma 5.

5.1 Relationship Between Leaf Set Tripartition and SRGN

Given T1 and T2. For any leaf set L′, let rn∗(L′) denote the number of hybrid
nodes in a SRGN for T1|L′ and T2|L′.

Lemma 9. Suppose T1 and T2 with leaf set L do not admit any leaf set biparti-
tion and are galled network-compatible. If T1 and T2 admit a leaf set tripartition
(X, Y, Z), then rn∗(X) + rn∗(Y) + rn∗(Z) + 1 ≤ rn∗(L).

Lemma 10. Suppose T1 and T2 with leaf set L do not admit any leaf set biparti-
tion and are galled network-compatible. If T1 and T2 admit a leaf set tripartition
(X, Y, Z), then there is a SRGN N for T1 and T2 that satisfies (X, Y, Z).

Proof. We construct N by following Steps 1.4-1.11 shown in Figure 1. Then
N satisfies (X, Y, Z) and is a galled network. Let N ′ be the network obtained
from N by removing the edge (qX , h) and let N ′′ be the network obtained from
N by removing the edge (qZ , h). Then N ′ refines T1 and N ′′ refines T2, which
implies N refines both T1 and T2. By the construction of N , we have rn(N) =
rn∗(X)+rn∗(Y)+rn∗(Z)+1. From Lemma 9, we conclude rn(N) = rn∗(L). ��

5.2 Linear Time Algorithm for Computing a Leaf Set Tripartition

To find leaf set tripartition for T1 and T2, we examine the graph G(T1, T2) again.

Lemma 11. Suppose T1 and T2 did not admit any leaf set bipartition while
there exists a non-skew network refining T1 and T2 that satisfies (X, Y, Z). Then,
G(T1, T2) contains an edge (u1, u2) such that Y = Λ(T1[u1]) ∩ Λ(T2[u2]). Also,
G(T1, T2) − {(u1, u2)} consists of two disjoint nontrivial star graphs G′ and G′′

(where a star graph is a connected graph with at most one node whose degree is
larger than 1) such that X = ∪(u,v)∈G′Λ(T1[u]) and Z = ∪(u,v)∈G′′Λ(T1[u]).

Lemma 12. Given three disjoint sets X, Y, Z such that L = X ∪Y ∪Z. We can
check if (X, Y, Z) is a leaf set tripartition admitted by T1 and T2 in O(n) time.

Constructing a Smallest Refining Galled Phylogenetic Network 275

Lemma 13. Suppose T1 and T2 did not admit any leaf set bipartition. We can
compute a leaf set tripartition admitted by T1 and T2, if one exists, in O(n) time.

Proof. When there exist a non-skew network refining T1 and T2, by Lemma 11,
there exists an edge (u, v) ∈ G(T1, T2) such that its deletion divides G(T1, T2)
into two star graphs. (u, v) corresponds to a set Y = Λ(T1(u))∩Λ(T2(v)). As its
deletion divides G into two star graphs, we know that T1|L − Y and T2|L − Y
admit a leaf set bipartition (X, Z). By Lemma 12, we can determine if (X, Y, Z)
is a leaf set tripartition in O(n) time. Note that every G(T1, T2) contains at most
two edges (u, v) such that G(T1, T2) − {(u, v)} consists of two disjoint nontrivial
star graphs. Hence, a tripartition for T1 and T2 can be computed in O(n) time.

By using a similar idea, we can compute a leaf set tripartition in O(n) time
when there exists a skew network refining T1 and T2. ��

6 RGNet: A New Technique for Inferring Galled
Networks

In this section, we describe a method we call RGNet (short for Refining Galled
Network) for inferring galled networks from sequence datasets and compare its
performance to other methods. RGNet is based on the approach proposed by
Nakhleh et al. [9] called SpNet, but unlike that approach, RGNet is capable of
inferring networks with more than one hybrid node. Given two gene datasets of
a set of taxa, RGNet tries to infer a smallest galled phylogenetic network for the
set of taxa by utilizing our algorithm for the SRGN problem as follows:

– Step 1: For each gene dataset, use maximum likelihood to construct the
best two trees for the dataset,

– Step 2: For each dataset, compute the strict consensus of the two best trees,
thus producing the trees t1 and t2, and

– Step 3: If t1 and t2 are compatible, combine the datasets and analyze the
combined dataset using neighbor-joining (NJ) and return a tree. Else, apply
our algorithm for the SRGN problem to t1 and t2. If possible, return a
galled network with minimum reticulations that refines t1 and t2; if no such
network exists, we try to reroot t1 and t2 (described below) to get t′1 and t′2,
respectively, and apply our algorithm again. If we still cannot get any SRGN
for t′1 and t′2, we apply NJ to the concatenated dataset and return a tree.

Rerooting the strict consensus trees. Our algorithm assumes rooted trees and
networks. So we use an outgroup to obtain rooted estimates of gene trees in-
ferred by maximum likelihood method (in Step 1). However, the estimates are
sometimes rooted incorrectly. This makes the inference of phylogenetic networks
impossible. To overcome this problem, whenever there do not exist any SRGN for
t1 and t2 (in Step 3), we try to reroot t1 and t2. To reroot both trees, we find an
edge (u1, v1) in t1 and (u2, v2) in t2, where ui is the parent of vi for i = 1, 2, such
that Λ(t1[v1]) = Λ(t2) \ Λ(t2[v2]) and the absolute difference between |Λ(t1[v1])|
and |Λ(t1) \ Λ(t1[v1])| is as small as possible. Then, if they exist, for i = 1, 2, we
create a new node pi in ti by subdividing the edge (ui, vi) and reroot ti at pi.

276 T.N.D. Huynh et al.

6.1 Experimental Evaluation

To evaluate and compare the performance of the four methods neighbor-joining,
NeighborNet, SpNet, and RGNet for phylogenetic reconstruction, we have car-
ried out extensive simulations. For the simulations, we have used the same
methodology as Nakhleh et al. [9], as discussed below.

Experimental Settings. We used the model from [8] to generate random net-
works. Within each generated galled network, we produced two induced gene
trees and simulated sequence evolution on these trees under the GTR+ Γ+I
(gamma distributed rates, with invariable sites) model of evolution, using the
settings of [12]. The two separate sequence datasets then were used to run SpNet
and RGNet, and the combined sequence dataset was given to NeighborNet and
neighbor-joining. As in [9], we used split-based false positive and false negative
rates to measure the error rates of the methods.

Topological accuracy Given a phylogenetic tree T leaf-label by a set L of
taxa. Each edge e in T induces a split {A(e), B(e)} on L, where A(e) is the set
of taxa which are descendants of e, and B(e) is the set containing the rest of the
taxa. We define the set of splits of T , denoted by C(T), as the set of all splits
induced by edges in T . Generalizing the above, let N be a phylogenetic network
whose set of induced trees is referred to as T (N). The set of splits of N , denoted
by C(N), is defined as C(N) =

⋃
T∈T (N) C(T). Given a model network N1 and

an inferred network N2, the false positive rate and false negative rate are defined
as: FP (N1, N2) = |C(N2)−C(N1)|

|C(N1)| and FN(N1, N2) = |C(N1)−C(N2)|
|C(N1)| .

Experimental Results. We have done extensive experiments to evaluate the
performances of the four methods. We focus here on some of the experimental
results on 40-taxon galled model networks, shown in Figure 4. The performance

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1000 2000 3000

Sequence length

E
rr

or
 r

at
e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 1 2 3 4

Number of hybrid nodes

E
rr

or
 r

at
e

FN(NJ)
FN(NNet)
FN(SpNet)
FN(RGNet)
FP(NJ)
FP(SpNet)
FP(RGNet)

Fig. 4. FN and FP error rates of neighbor-joining (NJ), NeighborNet(NNet), SpNet,
and RGNet on 40-taxon galled model networks. The left graph shows the error rates
as a function of concatenated sequence length (c.s.l) on model networks with expected
diameter (e.d) 0.5 and 3 hybrid nodes. The right graph shows the error rates as a
function of the number of hybrid nodes in model networks with e.d=0.2 and c.s.l=2000.
For clarity, the results is shown without the FP rates of NeighborNet

Constructing a Smallest Refining Galled Phylogenetic Network 277

of SpNet and neighbor-joining (NJ) are essentially identical, which is expected
since SpNet uses NJ whenever it cannot infer a one-hybrid network [9].

As indicated by the figures, the FN error rates of RGNet are comparable to
those of NeighborNet and are better than those of NJ and SpNet. Furthermore,
the FN rates of RGNet are stable as the number of hybrid nodes increases, while
the FN rates of NJ and SpNet increase significantly as the number of hybrid
nodes increases. In all cases, NeighborNet shows very poor false positive rates
which are always more than 70%, while NJ, SpNet and RGNet show very good
false positive rates (almost always less than 3%). The FP rates of RGNet are
marginally higher than those of NJ and SpNet. To summarize, RGNet outper-
forms the other three methods in the combined view of both FN and FP rates.

7 Solving the MGNC Problem

In this section, we solve the MGNC problem when k = 2. Given an instance T ,
we call the optimal solution network N for the problem a maximum compatible
galled network (MCGN) for T , and Λ(N) a maximum compatible set (MCS).
We present here an algorithm to compute the MCGN. Extension to k > 2 is
straightforward.

7.1 The Algorithm

Let T1 and T2 be two input trees. For any restricted subtrees T1[u1, A1] and
T2[u2, A2] of T1 and T2, respectively, we define the function MCS(T1[u1, A1],
T2[u2, A2]) to be the cardinality of the MCS of T1[u1, A1] and T2[u2, A2]. Fur-
thermore, suppose T1[v1, V1] is a restricted subtree of T1[u1, A1], let N be a
MCGN of T1[u1, A1] \ T1[v1, V1] and T2[u2, A2] such that there is a node v in
N , where Λ(N [v]) ⊆ Λ(T1[v1] \ T1[v1, V1]), and any node in N , which is on the
path from the root to v and excluding v, should be a non-split node. We define
MCS∗(T1[u1, A1], T1[v1, V1], T2[u2, A2]) to be the cardinality of Λ(N).

Below lemmas show the recursive equations for computing MCS(T1[u1, A1],
T2[u2, A2]) and MCS∗(T1[u1, A1], T1[v1, V1], T2[u2, A2]).

Lemma 14. For any restricted subtrees T1[u1, A1] and T2[u2, A2] of T1 and T2,
respectively, where u and v are non-leaf nodes, MCS(T1[u1, A1], T2[u2, A2]) =

max

⎧⎪⎪⎨
⎪⎪⎩

max{MCS(T1[u1, A1], T2[v2, child(v2)]) : v2 ∈ A2}
max{MCS(T1[v1, child(v1)], T2[u2, A2]) : v1 ∈ A1}
MCS1(T1[u1, A1], T2[u2, A2])
MCS2(T1[u1, A1], T2[u2, A2])

where

- MCS1(T1[u1, A1], T2[u2, A2]) = max{MCS(T1[u1, B1], T2[u2, B2]) + MCS
(T1[u1, A1 −B1], T2[u2, A2 −B2]) : Bi is some nonempty proper subset of Ai,
for i = 1, 2}, and

278 T.N.D. Huynh et al.

- MCS2(T1[u1, A1], T2[u2, A2]) = max{MCS∗(T1[u1, B1], T1[v1, V1], T2[u2, A2
−B2]) + MCS∗(T2[u2, B2], T2[v2, V2], T1[u1, A1 − B1]) + MCS(T1[v1, V1],
T2[v2, V2]) : Bi is a subset of Ai, vi is some node in Ti, Vi is a nonempty
proper subset of child(vi) such that Ti[vi, Vi] is a subtree in Ti[ui, Bi], for
i = 1, 2}.

For the base cases, in which u1 or u2 is a leaf, MCS(T1[u1, A1], T2[u2, A2]) equals
|Λ(T1[u1, A1]) ∩ Λ(T2[u2, A2])|.

Lemma 15. Consider any restricted subtrees T1[u1, A1] and T2[u2, A2] of T1
and T2, respectively. Suppose T1[v1, V1] is a restricted subtree of T1[u1, A1]. Then,
MCS∗(T1[u1,A1], T1[v1,V1], T2[u2,A2]) equals the maximum of the following three
terms.

- max{MCS∗(T1[u1, A1], T1[v1, V1], T2[w2, child(w2)]) : w2 ∈ A2},
- MCS∗(T1[w1, child(w1)], T1[v1, V1], T2[u2, A2]) where w1 ∈ A1 and T1[v1, V1]

is a subtree in T1[w1],
- max{MCS∗(T1[u1, B1], T1[v1, V1], T2[u2, B2])+MCS(T1[u1, A1−B1], T2[u2,

A2−B2]) : B1 and B2 are nonempty proper subset of A1 and A2, respectively,
and T1[v1, V1] is a subtree in T1[u1, B1] }.

For base cases, in which v1 = u1, then MCS∗(T1[u1, A1], T1[v1, V1], T2[u2, A2]) =
MCS(T1[u1, A1 − V1], T2[u2, A2]).

By applying dynamic programming on the above two recursive equations and
simple backtracking, we get the following.

Theorem 3. The MCGN of T1 and T2 can be computed in O(26dn4) time.

In general, the above algorithm can be extended to get the following result.

Theorem 4. The MGNC problem can be solved in O(23kdn2k) time.

8 RGNet+: Combining RGNet and Our Algorithm for
the MGNC Problem

The simulations in Section 6 demonstrate that RGNet has superior performance
over the other existing methods when the model network is a galled network.
However, when the model network is not galled, there is a high chance that
RGNet cannot construct any galled phylogenetic network from the gene tree
estimates. In these cases, RGNet would return a phylogenetic tree by calling
neighbor-joining. However, trees are not sufficient to accurately describe the
relationships among species that are represented in model networks, leading to
poor results in these cases.

To overcome this problem, we can employ our algorithm for the MGNC
problem. When RGNet cannot infer a galled phylogenetic network, we do not
call neighbor-joining. Instead, we apply our algorithm for the MGNC problem

Constructing a Smallest Refining Galled Phylogenetic Network 279

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3 4 5 6 7

FN

FP

rn(N*) |Λ (N)| |Λ (N)|/|Λ (N*)|
0 28.919 96.40%
1 27.1455 90.49%
2 26.9526 89.84%
3 25.4353 84.78%
4 24.7273 82.42%
5 23.3529 77.84%
6 22.6 75.33%

Fig. 5. Illustrating the performance of RGNet+. Experiments done on model networks
with 30 taxa, 0 to 6 hybrid nodes, concatenated sequence length=2000, and expected
diameter=0.5. The table shows the average number of leaves in inferred galled networks
as a function of the number of hybrid nodes in model networks. The graph shows the
average false positive rate and average false negative rate of inferred galled networks
as a function of the number of hybrid nodes in model networks

to remove as few species as possible from the input so that the resulting trees
can be merged to a galled network, and then proceed as before. In Section 6, we
have shown that RGNet has very good performance with regards to both the
false positive error rate and the false negative error rate. Therefore, the network
returned by our approach which combines our algorithms for the MGNC problem
and the SRGN problem is highly likely to show the relationships among a subset
of species that are represented in the true network. We name this combined
approach RGNet+.

We have done extensive experiments to evaluate RGNet+. We used the same
experimental setting as in Section 6.1. We simulated on general (i.e, not re-
stricted to galled) model networks. For each model network N∗, we inferred a
galled network N with as many taxa as possible. We used FN(N∗|Λ(N), N)
and FP (N∗|Λ(N), N) to measure the topological accuracy of N .

Figure 5 shows our experimental results. The FN and FP error rates are
less than 7%, which are good. Hence, the inferred networks estimated with high
accuracy the relationships among subsets of the species. We also see that on
average, the inferred galled networks kept a majority of the species (over 80%
when rn(N∗) ≤ 4). This implies that even when the true networks are not
restricted to be galled, the evolutionary relationships among a majority of the
species can be represented by a galled network.

References

1. D. Bryant and V. Moulton. Neighbor-Net: An agglomerative method for the con-
struction of phylogenetic networks. Molecular Biology and Evolution, 21(2):255–
265, 2004.

2. D. Gusfield, S. Eddhu, and C. Langley. Efficient reconstruction of phylogenetic net-
works with constrained recombination. In Proc. of Computational Systems Bioin-
formatics (CSB2003), pages 363–374, 2003.

3. B. Holland and V. Moulton. Consensus networks: A method for visualising incom-
patibilities in collections of trees. In Proc. of the 3 rdWorkshop on Algorithms in
Bioinformatics (WABI 2003), pages 165–176, 2003.

280 T.N.D. Huynh et al.

4. D. H. Huson, T. Dezulian, T. Klöpper, and M. Steel. Phylogenetic super-networks
from partial trees. In Proc. of the 4 thWorkshop on Algorithms in Bioinformatics
(WABI 2004), pages 388–399, 2004.

5. J. Jansson, N. B. Nguyen, and W.-K. Sung. Algorithms for combining rooted
triplets into a galled phylogenetic network. In Proc.of the 16 thAnnual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2005), to appear.

6. C. R. Linder, B. M. E. Moret, L. Nakhleh, and T. Warnow. Network (reticulate)
evolution: Biology, models, and algorithms. Tutorial presented at the 9 thPacific
Symposium on Biocomputing (PSB 2004), 2004.

7. W. P. Maddison. Gene trees in species trees. Systematic Biology, 46(3):523–536,
1997.

8. L. Nakhleh, J. Sun, T. Warnow, C. R. Linder, B. M. E. Moret, and A. Tholse.
Towards the development of computational tools for evaluating phylogenetic re-
construction methods. In Proc. of the 8 th Pacific Symposium on Biocomputing
(PSB 2003), pages 315–326, 2003.

9. L. Nakhleh, T. Warnow, and C. R. Linder. Reconstructing reticulate evolution in
species – theory and practice. In Proc. of the 8 thAnnual International Conference
on Research in Computational Molecular Biology (RECOMB 2004), pages 337–346,
2004.

10. N. Saitou and M. Nei. The neighbor-joining method: a new method for recon-
structing phylogenetic trees. Molecular Biology and Evolution, 4(4):406–425, 1987.

11. L. Wang, K. Zhang, and L. Zhang. Perfect phylogenetic networks with recombi-
nation. Journal of Computational Biology, 8(1):69–78, 2001.

12. D. Zwickl and D. Hillis. Increased taxon sampling greatly reduces phylogenetic
error. Systematic Biology, 51(4):588–598, 2002.

	Introduction
	Problem Definitions
	Our Contributions

	Terminology and Notation
	Solving the SRGN Problem
	Computing the Leaf Set Bipartition of T1 and T2
	Relationship Between Leaf Set Bipartition and SRGN
	Linear Time Algorithm for Computing a Leaf Set Bipartition

	Computing the Leaf Set Tripartition of T1 and T2
	Relationship Between Leaf Set Tripartition and SRGN

	RGNet: A New Technique for Inferring Galled Networks
	Experimental Evaluation

	Solving the MGNC Problem
	The Algorithm

	RGNet+: Combining RGNet and Our Algorithm for the MGNC Problem
	References

