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ALGORITHMS FOR COMBINING ROOTED TRIPLETS INTO A
GALLED PHYLOGENETIC NETWORK∗
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Abstract. This paper considers the problem of determining whether a given set T of rooted
triplets can be merged without conflicts into a galled phylogenetic network and, if so, constructing
such a network. When the input T is dense, we solve the problem in O(|T |) time, which is optimal
since the size of the input is Θ(|T |). In comparison, the previously fastest algorithm for this problem
runs in O(|T |2) time. We also develop an optimal O(|T |)-time algorithm for enumerating all simple
phylogenetic networks leaf-labeled by L that are consistent with T , where L is the set of leaf labels
in T , which is used by our main algorithm. Next, we prove that the problem becomes NP-hard if
extended to nondense inputs, even for the special case of simple phylogenetic networks. We also
show that for every positive integer n, there exists some set T of rooted triplets on n leaves such
that any galled network can be consistent with at most 0.4883 · |T | of the rooted triplets in T . On
the other hand, we provide a polynomial-time approximation algorithm that always outputs a galled
network consistent with at least a factor of 5

12
(> 0.4166) of the rooted triplets in T .
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1. Introduction. A rooted triplet is a binary, rooted, unordered tree with three
distinctly labeled leaves. Aho et al. [1] introduced the problem of determining whether
a given set of rooted triplets can be combined without conflicts into a distinctly leaf-
labeled tree which contains each of the given rooted triplets as an embedded subtree,
and, if so, returning one. The original motivation for this problem came from an
application in the theory of relational databases (see [1] for details), but it has since
been studied further and generalized because of its applications to phylogenetic tree
construction [2, 6, 7, 10, 13, 14, 17, 20, 21, 23, 25]. Here, we study an extension of the
problem in which the objective is to determine if a given set T of rooted triplets can
be merged into a more complex structure known as a galled phylogenetic network.

A phylogenetic network is a type of distinctly leaf-labeled, directed acyclic graph
that can be used to model nontreelike evolution. A number of methods for inferring
phylogenetic networks under various assumptions and using different kinds of data
have been proposed recently [8, 12, 15, 19, 22, 24]. A galled phylogenetic network,
or galled network for short, is an important, biologically motivated structural restric-
tion of a phylogenetic network (see section 1.2) in which all cycles in the underlying
undirected graph are node-disjoint.1
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We present several new results for the problem of inferring a galled network
consistent with a given set T of rooted triplets. Denote the set of leaf labels in T
by L. If T contains at least one rooted triplet for each cardinality-three subset of L,
then T is called dense. We first give an exact algorithm named FastGalledNetwork
for dense inputs whose running time is O(|T |). In comparison, the previously fastest
known algorithm for this case runs in O(|T |2) time [15]. Since the size of the input
is Θ(|T |) when T is dense and any algorithm that solves the problem must look at
the entire input, the asymptotic running time of our new algorithm is optimal. The
improvement in running time is due to two observations: first, that the so-called SN -
sets employed in [15] do not have to be explicitly computed but can be represented
using a tree (the SN -tree) which we can construct in O(|T |) time, and second, that
the SN -tree can be expanded into a galled network consistent with T (if one exists)
in O(|T |) time by replacing each internal node of degree 3 or higher with a special
kind of network found by applying an algorithm called SimpleNetworks.

Next, we show that the problem becomes NP-hard when T is not required to be
dense by giving a polynomial-time reduction from Set Splitting. Finally, we consider
approximation algorithms. We present an O(|L| · |T |3)-time algorithm that always
outputs a galled network consistent with at least a factor of 5

12 (> 0.4166) of the
rooted triplets in T for any T . (Our approximation algorithm can also be applied
in the dense case when the input cannot be combined into a galled network without
conflicts.) On the negative side, we show that there exist inputs for which any galled
network can be consistent with at most a factor of 0.4883 of the rooted triplets. It is
interesting to note that for trees, the corresponding bounds are known to be tight [7];
that is, there is a polynomial-time approximation algorithm which always constructs
a tree consistent with at least 1

3 · |T | of the rooted triplets in T , and there exist some
inputs for which no tree can achieve a factor higher than 1

3 · |T |.

1.1. Definitions and notation. A phylogenetic tree is a binary, rooted, un-
ordered tree whose leaves are distinctly labeled. A phylogenetic network is a gen-
eralization of a phylogenetic tree formally defined as a rooted, connected, directed
acyclic graph in which (1) exactly one node has indegree 0 (the root), and all other
nodes have indegree 1 or 2; (2) all nodes with indegree 2 (referred to as hybrid nodes)
have outdegree 1, and all other nodes have outdegree 0 or 2; and (3) all nodes with
outdegree 0 (the leaves) are distinctly labeled. For any phylogenetic network N , let
U(N) be the undirected graph obtained from N by replacing each directed edge by
an undirected edge. N is said to be a galled phylogenetic network (galled network, for
short) if all cycles in U(N) are node-disjoint. Galled networks are also known in the
literature as topologies with independent recombination events [24], galled-trees [8],
gt-networks [19], and level-1 phylogenetic networks [4, 15].

A phylogenetic tree with exactly three leaves is called a rooted triplet. The unique
rooted triplet on a leaf set {x, y, z} in which the lowest common ancestor of x and y is
a proper descendant of the lowest common ancestor of x and z (or, equivalently, where
the lowest common ancestor of x and y is a proper descendant of the lowest common
ancestor of y and z) is denoted by ({x, y}, z). For any phylogenetic network N , a
rooted triplet t = ({x, y}, z) is said to be consistent with N if t is an embedded
subtree of N (i.e., if a lowest common ancestor of x and y in N is a proper descendant
of a lowest common ancestor of x and z in N), and a set T of rooted triplets is said
to be consistent with N if every rooted triplet in T is consistent with N .

Denote the set of leaves in any phylogenetic network N by Λ(N) and for any set T
of rooted triplets, define Λ(T ) =

⋃
ti∈T Λ(ti). A set T of rooted triplets is dense if
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Fig. 1. A dense set T of rooted triplets with leaf set {a, b, c, d} and a galled phylogenetic network
which is consistent with T . Note that this solution is not unique.

for each {x, y, z} ⊆ Λ(T ), at least one of ({x, y}, z), ({x, z}, y), and ({y, z}, x) belongs
to T . If T is dense, then |T | = Θ(|Λ(T )|3). Furthermore, for any set T of rooted
triplets and L′ ⊆ Λ(T ), define T |L′ as the subset of T consisting of all rooted
triplets t with Λ(t) ⊆ L′. The problem we consider here is the following: Given a
set T of rooted triplets, output a galled network N with Λ(N) = Λ(T ) such that N
and T are consistent if such a network exists; otherwise, output null. See Figure 1
for an example. Throughout this paper, we write L = Λ(T ) and n = |L|.

To describe our algorithms, we need the following additional terminology. Let
N be a phylogenetic network. We call nodes with indegree 2 hybrid nodes and their
parent edges hybrid edges. Let h be a hybrid node in N . Every ancestor s of h such
that h can be reached using two disjoint directed paths starting at the children of s
is called a split node of h. If s is a split node of h, then any path starting at s and
ending at h is called a merge path of h, and any path starting at a child of s and
ending at a parent of h is called a clipped merge path of h. From the above, it follows
that in a galled network, each split node is a split node of exactly one hybrid node,
and each hybrid node has exactly one split node.

Let N be a galled network. For any node u in N , N [u] denotes the subnetwork
of N rooted at u, i.e., the minimal subgraph of N which includes all nodes and
directed edges of N reachable from u. N [u] is called a side network of N if there
exists a merge path P in N such that u does not belong to P but u is a child of a
node belonging to P . In this case, N [u] is also said to be attached to P . N is called a
simple phylogenetic network (or simple network) if N has exactly one hybrid node h,
the root node of N is the split node of h, and every side network of N is a leaf. For
example, the galled network on the right in Figure 1 is a simple network. For any
simple network N , denote the leaf attached to the hybrid node in N by hl(N).

1.2. Motivation. Phylogenetic networks are used by scientists to describe evo-
lutionary relationships that do not fit the traditional models in which evolution is
assumed to be treelike. Evolutionary events such as horizontal gene transfer or hy-
brid speciation (often referred to as recombination events) cannot be adequately rep-
resented in a single tree [8, 9, 19, 22, 24] but can be modeled in a phylogenetic
network as internal nodes having more than one parent. Galled networks are an
important type of phylogenetic network and have attracted special attention in the
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literature [4, 8, 19, 24] due to their biological significance (see [8] for a discussion) and
their simple, almost treelike, structure. When the number of recombination events
is limited and most of them have occurred recently, a galled network may suffice to
accurately describe the evolutionary process under study [8].

A challenge in the field of phylogenetics is to develop efficient and reliable meth-
ods for constructing and comparing phylogenetic networks. For example, to construct
a meaningful phylogenetic network for a large subset of the human population (which
may subsequently be used to help locate regions in the genome associated with some
observable trait indicating a particular disease) in the future, efficient algorithms are
crucial because the input can be expected to be very large. The motivation behind
the rooted triplet approach taken in this paper is that a highly accurate tree for each
cardinality-three subset of the leaf set can be obtained through maximum likelihood-
based methods such as [3] or Sibley–Ahlquist-style DNA-DNA hybridization exper-
iments (see [17]). Hence, the algorithms presented in [15] and here can be used as
the merging step in a divide-and-conquer approach for constructing phylogenetic net-
works analogous to the quartet method paradigm for inferring unrooted phylogenetic
trees [16, 18] and other supertree methods (see [10, 21] and the references therein).
We consider dense input sets in particular since this case can be solved in polynomial
time.

1.3. Related work. Aho et al. [1] gave an O(|T | · n)-time algorithm for deter-
mining whether a given set T of rooted triplets on n leaves is consistent with some
rooted, distinctly leaf-labeled tree, and, if so, returning such a tree. Henzinger, King,
and Warnow [10] improved its running time to min

{
O(|T |·n0.5), O(|T |+n2 log n)

}
; in

fact, replacing the deterministic algorithm for dynamic graph connectivity employed
by Henzinger, King, and Warnow, with a more recent one due to Holm, de Lichtenberg,
and Thorup [11] yields a running time of min

{
O(|T | · log2 n), O(|T |+ n2 log n)

}
[14].

Ga̧sieniec et al. [6] studied a variant of the problem for ordered trees. Ng and
Wormald [21] considered the problem of constructing all rooted, unordered trees dis-
tinctly leaf-labeled by Λ(T ) that are consistent with T .

If two or more of the rooted triplets are in conflict, i.e., contain contradicting
branching information, the algorithm of Aho et al. returns a null tree. However, this is
not very practical in certain applications. For example, in the context of constructing
a phylogenetic tree from a set of rooted triplets, some errors may occur in the input
when the rooted triplets are based on data obtained experimentally, yet a nonnull
tree is still required. In this case, one can try to construct a tree consistent with the
maximum number of rooted triplets in the input [2, 6, 7, 13, 25], or a tree with as many
leaves from Λ(T ) as possible which is consistent with all input rooted triplets involving
these leaves only [14]. Although the former problem is NP-hard [2, 13, 25], Ga̧sieniec
et al. [7] showed that it has a polynomial-time approximation algorithm that outputs
a distinctly leaf-labeled tree consistent with at least 1

3 of the given rooted triplets,
which is a tight bound in the sense that there exist inputs T such that any distinctly
leaf-labeled tree can be consistent with at most 1

3 of the rooted triplets in T .2

The problem studied in this paper was introduced in [15]. The main result of [15]
is an exact O(|T |2)-time algorithm for the dense case. Reference [15] also showed
that if no restrictions are placed on the structure of the output phylogenetic network
(i.e., if nongalled networks are allowed), then the problem always has a solution which

2On the other hand, if the optimal solution contains a large fraction of the input rooted triplets,
another approximation presented in [7] (based on minimum cuts in the auxiliary graph introduced
by Aho et al. [1]) gives a better approximation factor.
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can be easily obtained from any given sorting network for n elements. Nakhleh et al.
[19] gave an O(n2)-time algorithm for the related problem of determining if two given
phylogenetic trees T1 and T2 with identical leaf sets can be combined into a galled
network containing both T1 and T2 as embedded subtrees and, if so, constructing one
with the smallest possible number of hybrid nodes, where n is the number of leaves (in
fact, this is equivalent to inferring a galled network consistent with the set of all rooted
triplets which are embedded subtrees of T1 or T2). They also studied the case where
T1 and T2 may contain errors but only one hybrid node is allowed. Huson et al. [12]
considered a similar problem for constructing an unrooted phylogenetic network from
a set of unrooted, distinctly leaf-labeled trees.

1.4. Organization of the paper. In section 2, we present a new algorithm
called SimpleNetworks for computing all simple phylogenetic networks consistent with
a given dense set T of rooted triplets in O(n3) time. This algorithm is used by
our main algorithm FastGalledNetwork in section 3 to construct a galled network
consistent with a given dense set T of rooted triplets, if one exists, in optimal O(n3)
time. In section 4, we prove that the problem becomes NP-hard if we remove the
requirement that T forms a dense set. Next, in section 5.1, we show that for every
positive integer n, there exists some set T of rooted triplets with |Λ(T )| = n such that
any galled network can be consistent with at most 0.4883 · |T | of the rooted triplets
in T . On the other hand, we give an O(n · |T |3)-time algorithm in section 5.2 that
constructs a galled network guaranteed to be consistent with at least a factor of 5

12
(> 0.4166) of the rooted triplets in T for any input T .

2. Constructing all simple phylogenetic networks when T is dense. In
this section, we describe an algorithm called SimpleNetworks for inferring all simple
phylogenetic networks consistent with a given dense set T of rooted triplets in O(n3)
time, where L = Λ(T ) and n = |L|. This algorithm is later used by our main algorithm
in section 3. Below, for any L′ ⊆ L, G(L′) denotes the auxiliary graph for L′ (originally
defined by Aho et al. [1]), which is the undirected graph with vertex set L′ and edge
set E(L′), where for each ({i, j}, k) ∈ T |L′, the edge {i, j} is included in E(L′).

SimpleNetworks assumes that n ≥ 3, T is dense, and G(L) is connected.
For any simple network N , define A(N) and B(N) to be the sets of leaves attached

to the two clipped merge paths in N , where we require without loss of generality that
A(N) is nonempty. If both A(N) and B(N) are nonempty, then N is called nonskew ;
if A(N) is nonempty and B(N) is empty, then N is called skew.

Algorithm SimpleNetworks is listed in Figure 2. It calls two procedures named
Non-SkewSimpleNetworks and SkewSimpleNetworks that find all valid nonskew simple
networks and all valid skew simple networks, respectively. Then it returns their union.
In the next two subsections, we show how to implement each of these two procedures
to run in O(n3) time. We thus obtain Theorem 1.

Theorem 1. The set of all simple networks consistent with a given dense set of
rooted triplets and leaf-labeled by L can be constructed in O(n3) time.

The next two lemmas are used in sections 2.1 and 2.2. A caterpillar tree is a
rooted tree such that every internal node has at most one child which is not a leaf
(see, e.g., [2]). Recall that for any simple network N , we denote the leaf attached to
the hybrid node in N by hl(N).

Lemma 1. Suppose N is a simple phylogenetic network that is consistent with
a set T of rooted triplets. Let N ′ be the graph obtained from N by deleting the root
node of N , the hybrid node of N , and hl(N) together with all their incident edges,
and then, for every node with outdegree 1 and indegree less than 2, contracting its
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Algorithm SimpleNetworks

Input: A dense set T of rooted triplets with a leaf set L such that G(L) consists of
one connected component.

Output: The set of all simple phylogenetic networks with leaf set L which are consistent
with T .

1 Let N1 = Non-SkewSimpleNetworks(T ).

2 Let N2 = SkewSimpleNetworks(T ).

3 return N1 ∪N2.
End SimpleNetworks

Fig. 2. Constructing all simple phylogenetic networks.

outgoing edge. If N is nonskew, then N ′ consists of two binary caterpillar trees which
are consistent with T |A(N) and T |B(N), respectively; if N is skew, then N ′ is a
binary caterpillar tree which is consistent with T |A(N).

Lemma 2. [15] Let T be a dense set of rooted triplets and let L be the leaf set
of T . There is at most one rooted, unordered tree distinctly leaf-labeled by L which is
consistent with T . Furthermore, if such a tree exists, then it must be binary.

2.1. Constructing all nonskew simple phylogenetic networks. Let U be
an undirected, connected graph. Any partition (X,Y, Z) of the vertex set of U is
called a nonskew leaf partition in U if |X| ≥ 1, |Y | = 1, |Z| ≥ 1, and in U the
following holds: (1) X and Z form two cliques, and (2) there is no edge between a
vertex in X and a vertex in Z. Any two nonskew leaf partitions of the form (X,Y, Z)
and (Z, Y,X) are considered to be equivalent.

Lemma 3. Let T be a dense set of rooted triplets and let L be the leaf set of T . If
N is a nonskew simple phylogenetic network with leaf set L that is consistent with T ,
then (A(N), hl(N), B(N)) forms a nonskew leaf partition in G(L).

Proof. Consider any ai, aj ∈ A(N) with i �= j and let b be an arbitrary element
in B(N). N is consistent with T , implying that ({ai, b}, aj) �∈ T and ({aj , b}, ai) �∈ T .
Since T is dense, ({ai, aj}, b) must belong to T ; i.e., there is an edge (ai, aj) in G(L).
Hence, A(N) forms a clique in G(L). In the same way, B(N) forms a clique in G(L).
Moreover, T cannot contain any rooted triplet of the form ({a, b}, x) where a ∈ A(N),
b ∈ B(N), x ∈ L, and thus there are no edges in G(L) between leaves in A(N) and
leaves in B(N). However, G(L) is connected, which means that there must be at least
one edge from A(N) to the leaf hl(N) and at least one edge from B(N) to hl(N). By
definition, (A(N), hl(N), B(N)) forms a nonskew leaf partition in G(L).

By Lemmas 1 and 3, if N is a nonskew simple network with leaf set L that is
consistent with T , then (A(N), hl(N), B(N)) forms a nonskew leaf partition in G(L)
and T |A(N) and T |B(N) are consistent with two binary caterpillar trees. Algorithm
Non-SkewSimpleNetworks, shown in Figure 3, uses these implications to efficiently
construct all nonskew simple networks with leaf set L that are consistent with T .
The algorithm enumerates all nonskew leaf partitions in G(L), and for each such
leaf partition P , tries to build binary caterpillar trees for subsets of L induced by P
(Lemma 2 ensures that for any dense subset T ′ of T , if T ′ is consistent with a
caterpillar tree, then it is uniquely determined, and so the algorithm of Aho et al. [1]
can find it) and if successful, then combines the caterpillar trees in accordance with
Lemma 1 to obtain all possible valid simple networks. Lemmas 1 and 3 guarantee that
this approach will discover every valid simple network. However, it may also yield
some simple networks which are not consistent with T ; hence, before including any
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Algorithm Non-SkewSimpleNetworks

Input: A dense set T of rooted triplets with a leaf set L such that G(L) consists of
one connected component.

Output: The set of all nonskew simple phylogenetic networks with leaf set L which are
consistent with T .

1 Set N1 = ∅.
2 Construct G(L) and compute all nonskew leaf partitions in G(L).

3 for every nonskew leaf partition (X,Y, Z) in G(L) do

3.1 Let TX = BuildTree(T |X) and TZ = BuildTree(T |Z).

3.2 if TX and TZ are binary caterpillar trees then

Make the roots of TX and TZ children of a new root node, create a new
hybrid node H with a child labeled by the leaf in Y , and construct at most
four nonskew simple networks by attaching H to one of TX ’s bottommost
leaves’ parent edges and one of TZ ’s bottommost leaves’ parent edges in all
possible ways.

For each obtained network N , if N is consistent with T then let N1 =
N1 ∪ {N}.

endfor

4 return N1.
End Non-SkewSimpleNetworks

Fig. 3. Constructing all nonskew simple phylogenetic networks.

constructed network N in the final solution set N1, Non-SkewSimpleNetworks verifies
if N is consistent with T .

For any L′ ⊆ L with |L′| ≥ 3, BuildTree(T |L′) refers to the fast implementation
of the algorithm of Aho et al. applied to T |L′ (we may assume it returns null if
it fails). For |L′| < 3, the set T |L′ is empty and we simply let BuildTree(T |L′)
return a tree with the one or two leaves in L′. The running time of BuildTree(T |L′)
is min

{
O(|T | · log2 n), O(|T | + n2 log n)

}
(see section 1.3).

We now derive an upper bound on the running time of Non-SkewSimpleNetworks.

Lemma 4. For any undirected, connected graph U with n vertices, all nonskew
leaf partitions in U can be computed in O(n3) time.

Proof. To find all nonskew leaf partitions in U , test each of the n vertices to see
if its removal divides U into two disjoint, nonempty cliques. Each test can be done in
O(n2) time by depth-first search; thus this takes a total of O(n3) time.

Lemma 5. Any undirected, connected graph U has at most two nonskew leaf
partitions.

Proof. First observe that for any two different nonskew leaf partitions (X, {h}, Z)
and (X ′, {h′}, Z ′) in U , we have h �= h′. Moreover, h and h′ are neighbors in U
(otherwise, for any two neighbors x′, z′ of h′ such that x′ ∈ X ′ and z′ ∈ Z ′, we have
x′ �= h and z′ �= h, and then all of h′, x′, z′ must belong to one of X and Z while there
is no edge between x′ and z′, which is a contradiction).

Now, suppose (X, {h}, Z) is a nonskew leaf partition in U and consider any other
nonskew leaf partition (X ′, {h′}, Z ′) in U . Either h′ ∈ X or h′ ∈ Z. If h′ ∈ X, then h
can have no neighbors in X other than h′ (otherwise, there would be an edge between
X ′ and Z ′) and, furthermore, U cannot have any nonskew leaf partition of the form
(X ′′, {h′′}, Z ′′) where h′′ ∈ Z because h′ and h′′ are not neighbors. This also holds in
the case h′ ∈ Z. This proves that U has at most two nonskew leaf partitions.
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Algorithm SkewSimpleNetworks

Input: A dense set T of rooted triplets with a leaf set L such that G(L) consists of
one connected component.

Output: The set of all skew simple phylogenetic networks with leaf set L which are
consistent with T .

1 Set N2 = ∅.
2 Construct D.

3 for every x ∈ L do

3.1 Let Q = BuildCaterpillar(D |L′), where L′ = L \ {x}.
3.2 if Q �= null then

Make the root of Q a child of a new root node r, create a new hybrid node H
with a child labeled by x, add an edge from r to H, and construct two skew
simple networks by attaching H to each one of Q’s two bottommost edges.

For each obtained network N , if N is consistent with all rooted triplets in T
involving x then let N2 = N2 ∪ {N}.

endfor

4 return N2.
End SkewSimpleNetworks

Fig. 4. Constructing all skew simple phylogenetic networks.

Next, if N is any galled network with n leaves, then the total number of nodes
in N is O(n) by Lemma 3 in [4]. By traversing the O(n) nodes in N in a bottom-
up order while keeping track of each node’s O(n) descendants and updating a table
containing all O(n2) node pairs’ lowest common ancestors, we obtain the following.

Lemma 6. Let N be a galled network with n leaves. After O(n2) time prepro-
cessing, we can check if any given rooted triplet is consistent with N in O(1) time.

Theorem 2. The time complexity of Algorithm Non-SkewSimpleNetworks is
O(n3).

Proof. Steps 1 and 4 require O(1) time. Step 2 can be performed in O(n3) time
by a single scan of T and by applying Lemma 4. Moreover, G(L) has at most two
nonskew leaf partitions according to Lemma 5. Therefore, steps 3.1 and 3.2 are carried
out at most two times each. Step 3.1 takes O(|T | + n2 log n) = O(n3) time with the
fast implementation of BuildTree by Henzinger, King, and Warnow [10]. Every time
step 3.2 is performed, the algorithm constructs at most four nonskew simple networks
and tests each of them for inclusion in N , which after O(n2) time preprocessing takes
O(n3) time using Lemma 6 since |T | = O(n3). Hence, the total running time is
O(n3).

2.2. Constructing all skew simple phylogenetic networks. To obtain all
skew simple networks with leaf set L consistent with T , Algorithm SkewSimpleNet-
works in Figure 4 tries all ways to remove one leaf x from L and construct a binary
caterpillar tree consistent with all rooted triplets not involving x using a procedure
named BuildCaterpillar. For each such caterpillar Q, it forms two candidate skew
simple networks by letting the root of Q be a child of a new split node with a hybrid
node H such that H has a child labeled by x and H is attached to one of Q’s two
bottommost edges. (By Lemma 1, every skew simple network with leaf set L that
is consistent with T must have this structure.) Then, each candidate skew simple
network is checked to see if it is consistent with all rooted triplets in T involving x
(by the above, it is always consistent with the rest); if yes, then it is included in the
solution set N2.
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The procedure BuildCaterpillar uses a graph D, defined as follows. Given a set T
of rooted triplets with leaf set L, let D be the directed graph with vertex set L such
that there is a directed edge (x, y) if and only if T contains at least one rooted triplet
of the form ({y, z}, x), where z ∈ L. For any L′ ⊆ L, let D |L′ be the subgraph of D
in which all vertices not in L′ and their incident edges have been deleted. D |L′ is
acyclic if and only if there exists a binary caterpillar tree consistent with T |L′.

For any L′ ⊆ L, BuildCaterpillar(D |L′) returns a binary caterpillar tree with leaf
set L′ which is consistent with T |L′ if such a tree exists, and null otherwise, by the
following method. If D |L′ has a cycle, then return null. Else, do a topological sort
of D |L′ to find a linear ordering O of L′ and return a binary caterpillar tree whose
leaves are labeled in order of increasing distance from the root according to O. Since
T is dense, O is uniquely determined except for its last two elements which may be
interchanged arbitrarily.

Theorem 3. The time complexity of Algorithm SkewSimpleNetworks is O(n3).

Proof. Steps 1 and 4 require O(1) time, and step 2 can be performed in O(n3)
time by a single scan of T . Steps 3.1 and 3.2 are carried out n times. Each call to
BuildCaterpillar in step 3.1 takes O(n2) time since a topological sort can be done in
O(n2) time. In step 3.2, to construct two networks and test them against the O(n2)
rooted triplets involving x takes O(n2) time by Lemma 6. Hence, the total running
time is O(n3).

3. An exact algorithm for inferring a galled phylogenetic network from
a dense set of rooted triplets with optimal running time. Here, we present
our algorithm FastGalledNetwork for constructing a galled network consistent with
a given dense set T of rooted triplets if such a network exists. Its running time is
O(n3), where n = |L| and L denotes the leaf set of T , which is optimal since the size
of the input is Θ(n3) when T is dense.

In section 3.1, we give an algorithm named ComputeSNTree which computes
the so-called SN -tree for T in O(n3) time. Then, in section 3.2, we describe Fast-
GalledNetwork. It uses ComputeSNTree as well as SimpleNetworks from section 2 to
construct a galled network consistent with T (if one exists) from the SN -tree for T .
In sections 3.1 and 3.2 below, we assume T is dense.

3.1. Computing the SN-tree. For any X ⊆ L, the set SN(X) is defined
recursively as SN(X ∪ {c}) if there exist some x, x′ ∈ X and c ∈ L \ X such that
({x, c}, x′) ∈ T , and as X otherwise. SN -sets were introduced in [15]. Intuitively,
each SN -set is a subset of L which will form the leaf set of one subnetwork in the
final solution. The SN -sets satisfy the following important property.

Lemma 7 (see [15]). If T is dense, then for any A,B ⊆ L, SN(A) ∩ SN(B)
equals ∅, SN(A), or SN(B).

Reference [15] showed how to compute SN({a, b}) for any a, b ∈ L in O(n3) time;
that approach therefore takes O(n5) time to compute SN({a, b}) for all a, b ∈ L. This
section presents a faster method for implicitly computing all SN -sets of this form when
T is dense, which requires only O(n3) time. The algorithm (ComputeSNTree) is listed
in Figure 5. Given a dense T , it builds a rooted tree called the SN -tree for T which
encodes all SN -sets so that SN(X) for any X ⊆ L can be retrieved efficiently.

In the first step, ComputeSNTree constructs a directed graph GT with vertex
set V (GT ) and edge set E(GT ). V (GT ) is defined as {v{a,b} | a, b ∈ L}, where v{a,a}
for any a ∈ L is denoted by v{a} for short, and E(GT ) is {(v{a,c}, v{a,b}), (v{a,c}, v{b,c}),
(v{b,c}, v{a,b}), (v{b,c}, v{a,c}) | ({a, b}, c) ∈ T }

⋃
{(v{a,b}, v{a}), (v{a,b}, v{b}) | a, b ∈
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Algorithm ComputeSNTree

Input: A dense set T of rooted triplets with a leaf set L.

Output: The SN -tree RT for T .

1 Construct the directed graph GT .

2 Compute the set C of strongly connected components of GT and then construct G′
T

for T .

3 Construct the SN -tree RT and return RT .
End ComputeSNTree

Fig. 5. Computing the SN-tree for a dense set T .

L}. Note that |V (GT )| = O(n2) and |E(GT )| = O(n3). Before describing the re-
maining steps of ComputeSNTree, we first investigate the structure of GT and the
relationship between GT and the SN -sets of the form SN({a, b}).

Lemma 8. For every a, b, y, z ∈ L, if GT contains a path from v{a,b} to v{a,y}
and a path from v{a,b} to v{a,z}, then GT has a path from v{a,b} to v{y,z}.

Proof. If |{a, y, z}| < 3, then the lemma follows from the construction of GT .
Otherwise, since T is dense, we have one of the following cases for {a, y, z}:

• Case (1): ({y, z}, a) ∈ T or ({a, z}, y) ∈ T . Then (v{a,y}, v{y,z}) ∈ E(GT ),
and thus there is a path from v{a,b} to v{a,y} and then to v{y,z}.

• Case (2): ({a, y}, z) ∈ T . Then (v{a,z}, v{y,z}) ∈ E(GT ), and thus there is a
path from v{a,b} to v{a,z} and then to v{y,z}.

Lemma 9. For every a, b, c ∈ L, if c ∈ SN({a, b}), then there exists a directed
path from v{a,b} to v{a,c} in GT .

Proof. Define SN0({a, b}) = {a, b} and for � = 1, 2, . . . , n, define SN� ={
x ∈ L | ({y, x}, z) ∈ T for some y, z ∈ SN�−1({a, b})

}
. Note that SN({a, b}) =⋃n

i=0 SN�({a, b}). We prove by induction that the following statement P (�) is true
for � ∈ {0, 1, 2, . . . , n}.

P (�): For every x ∈ SN�({a, b}), there exists a path from v{a,b} to v{a,x} in GT .
When � = 0 (the base case), the statement follows trivially by the construction

of GT .
Next, when � > 0, suppose the statement P (� − 1) is true; i.e., for every w ∈

SN�−1({a, b}), there exists a path from v{a,b} to v{a,w} in GT . Consider any x ∈
SN�({a, b}). By the definition of SN�, there exist y, z ∈ SN�−1({a, b}) such that
({y, x}, z) ∈ T . Then P (� − 1) implies that there is a path from v{a,b} to v{a,y} and
a path from v{a,b} to v{a,z}, which means there exists a path from v{a,b} to v{y,z}
according to Lemma 8. Moreover, (v{y,z}, v{x,y}) ∈ E(GT ) because ({y, x}, z) ∈ T .
Now, if x = a or y = a, then P (�) follows directly; therefore assume x �= a and y �= a.
Since T is dense, for the set {a, x, y}, there are two cases:

• Case (1): ({a, y}, x) ∈ T or ({a, x}, y) ∈ T . Then (v{x,y}, v{a,x}) ∈ E(GT ).
• Case (2): ({x, y}, a) ∈ T . Then (v{a,y}, v{a,x}) ∈ E(GT ).

In both cases, there exists a path from v{a,b} to v{a,x}, and thus P (�) holds.
By induction, P (�) is true for every � ∈ {0, 1, 2, . . . , n}. Since c belongs to at least

one set SN�, the lemma follows.
Lemma 10. For every a, b, c, d ∈ L, if there is a directed path from v{a,b} to v{c,d}

in GT , then SN({c, d}) ⊆ SN({a, b}).
Proof. For any e ∈ SN({c, d}), there is a directed path from v{c,d} to v{c,e} by

Lemma 9. Since E(GT ) contains the directed edge (v{c,e}, v{e}), and since there is a
directed path from v{a,b} to v{c,d}, this means there is a directed path from v{a,b} to
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v{e}. Without loss of generality, let the path be v{x0,x1}, v{x1,x2}, v{x2,x3}, . . . , v{xp−1,xp},
v{xp}, where {x0, x1} = {a, b}, and xp = e. Then, based on the rooted triplets
in T for the sets {x0, x1, x2}, {x1, x2, x3}, . . . , {xp−2, xp−1, xp}, we can deduce that
xp ∈ SN({a, b}). Thus, e ∈ SN({a, b}), so we have just shown that SN({c, d}) ⊆
SN({a, b}).

Corollary 1. For any two nodes v{a,b} and v{c,d} on a directed cycle in GT ,
SN({a, b}) = SN({c, d}).

By the above, computing SN({a, b}) for any a, b ∈ L is equivalent to finding all
nodes of the form v{c} reachable from v{a,b}. Let the set of all strongly connected com-
ponents of GT be C = {C1, C2, . . . , Cm}. By Corollary 1, SN({a, b}) = SN({c, d})
if v{a,b} and v{c,d} are in the same Ci. So, we define SN(Ci) as SN({a, b}) for any
v{a,b} ∈ Ci. The set C has the following properties.

Lemma 11. For every c ∈ L, {v{c}} ∈ C. Moreover, for every i �= j, SN(Ci) �=
SN(Cj).

Proof. Since v{c} has no outgoing edge, {v{c}} is a strongly connected component
in GT and therefore belongs to C.

To prove the second statement, suppose for the sake of contradiction that there
exist strongly connected components Ci, Cj with i �= j such that SN(Ci) = SN(Cj).
Take any v{w,x} ∈ Ci and v{y,z} ∈ Cj . Since y, z ∈ SN(Cj) = SN(Ci) = SN({w, x}),
it follows from Lemma 9 that GT has a path from v{w,x} to v{w,y} and a path from
v{w,x} to v{w,z}, and hence a path from v{w,x} to v{y,z} by Lemma 8. Symmetrically,
GT contains a path from v{y,z} to v{w,x}. But then Ci ∪ Cj must be a strongly
connected component of GT , and we have arrived at a contradiction.

In the second step of ComputeSNTree, we compute C and then let G′
T be the

directed graph with vertex set V (G′
T ) = C and edge set E(G′

T ) = {(Ci, Cj) | there
exists some (v{w,x}, v{y,z}) ∈ E(GT ) where v{w,x} ∈ Ci and v{y,z} ∈ Cj}. Note that
G′

T is a directed acyclic graph. From G′
T , construct a graph RT with V (RT ) = C and

E(RT ) = {(Ci, Cj) ∈ E(G′
T ) | there exists no path of length at least 2 from Ci to Cj

in G′
T }. Finally, return RT . The next two lemmas show that RT is indeed a tree.

Lemma 12. There is only one node in G′
T with indegree 0.

Proof. Suppose G′
T has two different nodes r, s with indegree 0. Denote the

two strongly connected components in GT which correspond to r and s in RT by
Cr and Cs, respectively. Let v{a,b} be any node in Cr and let v{c,d} be any node
in Cs. Clearly, a �= b and c �= d since any node of the form v{a} belongs to a strongly
connected component consisting only of v{a} and therefore cannot have indegree 0
by the construction of GT . Consider the three possible rooted triplets with leaf
set {a, b, c} (of which at least one belongs to T since T is dense). By the definition
of E(GT ), there will always be at least one edge ending at v{a,b}. Since r has indegree 0
in G′

T , this implies that (1) at least one of v{a,c} and v{b,c} must be in Cr. In the
same way, we see that (2) at least one of v{a,d} and v{b,d} is in Cr; (3) at least one of
v{a,c} and v{a,d} is in Cs; and (4) at least one of v{b,c} and v{b,d} is in Cs.

Assume without loss of generality that v{a,c} ∈ Cr. Then (3) yields v{a,d} ∈ Cs,
and thus we have v{b,d} ∈ Cr by (2), and then v{b,c} ∈ Cs by (4). There are three cases:

• Case (1): ({a, b}, c) ∈ T . Then the two edges (v{a,c}, v{b,c}) and (v{b,c}, v{a,c})
in E(GT ) imply that Cr is reachable from Cs in G′

T and vice versa.
• Case (2): ({a, c}, b) ∈ T . Then (v{a,b}, v{b,c}), (v{b,c}, v{a,b}) ∈ E(GT ) imply

that Cr is reachable from Cs in G′
T and vice versa.

• Case (3): ({b, c}, a) ∈ T . Then (v{a,b}, v{b,c}) ∈ E(GT ), and thus Cs is
reachable from Cr in G′

T . Next, by considering all possible rooted triplets on



COMBINING ROOTED TRIPLETS INTO A GALLED NETWORK 1109

{a, c, d}, we see that (v{c,d}, v{a,c}) ∈ E(GT ); (v{a,c}, v{c,d}), (v{c,d}, v{a,c}) ∈
E(GT ); or (v{a,c}, v{a,d}), (v{a,d}, v{a,c}) ∈ E(GT ), which means that Cr is
always reachable from Cs in G′

T .

Every case contradicts that Cr and Cs are disjoint strongly connected components.
Hence, G′

T can only have one node with indegree 0.

Lemma 13. RT is a tree with no nodes having outdegree 1. Its set of leaves is
{{v{c}} | c ∈ L}.

Proof. From Lemma 12 and by the construction of RT , it follows that RT has
only one node with indegree 0, i.e., only one root node.

Now, suppose RT is not a tree. Then there exists a node Cj in RT with at
least two parents, say Ci and Ci′ . By definition, (Ci, Cj), (Ci′ , Cj) ∈ E(G′

T ) and by
Lemma 10, SN(Cj) ⊆ SN(Ci) as well as SN(Cj) ⊆ SN(Ci′). Next, by Lemmas 7
and 11, we have either SN(Ci) � SN(Ci′) or SN(Ci′) � SN(Ci). Without loss of
generality, assume SN(Ci) � SN(Ci′). Then, by Lemmas 8 and 9, we have a path
in G′

T from Ci′ to Ci and then to Cj . But this implies that (Ci′ , Cj) �∈ E(RT ), which
is a contradiction. Thus, RT must be a tree.

Next, suppose some node Ci in RT has a single child Cj . By Lemma 10, SN(Cj) ⊆
SN(Ci). Observe that for any c ∈ SN(Ci), there is a path from Ci to v{c} in G′

T
according to Lemma 9, and since this path passes through Cj , we also have c ∈
SN(Cj) by Lemma 10. This means that SN(Ci) ⊆ SN(Cj), giving us SN(Ci) =
SN(Cj). But this contradicts Lemma 11. Thus, RT has no nodes with outdegree 1.

Finally, for every c ∈ L, {v{c}} is of outdegree 0 in G′
T and is therefore a leaf

in RT . The lemma follows.

Corollary 2. |C| = O(n).

Proof. By the definition of RT , we have V (RT ) = C. Lemma 13 states that RT is a
tree with n leaves and no nodes with outdegree 1. Hence, |C| = |V (RT )| = O(n).

In the rest of the paper, RT is called the SN -tree for T . This is because
SN({a, b}) for any a, b ∈ L can be obtained from RT using the following theorem.

Theorem 4. Given any a, b ∈ L, let u be the lowest common ancestor of v{a}
and v{b} in RT . Then, SN({a, b}) = {c ∈ L | v{c} is a descendant of u in RT }.

Proof. We first prove that for any c ∈ L, if v{c} is a descendant of the lowest
common ancestor u of v{a} and v{b} in RT , then c ∈ SN({a, b}). Let v{y,z} be any
node in the strongly connected component in GT which corresponds to u in RT . Then
a ∈ SN({y, z}) by Lemma 10. Since also a ∈ SN({a, b}), Lemma 7 implies that either
(1) SN({a, b}) � SN({y, z}) or (2) SN({y, z}) ⊆ SN({a, b}). If (1) holds, then there
is a path in GT from v{y,z} to v{a,b} by Lemma 9, but then u cannot be the lowest
common ancestor of v{a} and v{b} in RT , which is a contradiction. Thus, (2) must
hold, which means that y, z ∈ SN({a, b}), so there is a path in GT from v{a,b} to
v{y,z} as can be seen by applying Lemma 9 two times and then Lemma 8. Now, since
v{c} is a descendant of u in RT , there is a path in GT from v{y,z} to v{c}. This shows
that v{c} is reachable from v{a,b} in GT , i.e., that c ∈ SN({a, b}) by Lemma 10.

Next, we prove that if c ∈ SN({a, b}), then v{c} is a descendant of u in RT .
Take any c ∈ SN({a, b}), and suppose that v{c} is not a descendant of u in RT .
Then v{b} is a descendant of the lowest common ancestor u′ of v{a} and v{c} in RT ,
so b ∈ SN({a, c}) by the preceding paragraph and, similarly, a ∈ SN({b, c}). But
then, SN({a, b}) = SN({a, c}) = SN({b, c}) by Lemma 9 and Corollary 1, which is
impossible since this would imply that u and u′ coincide. Therefore, v{c} must be a
descendant of u in RT .

Thus, the SN -tree has the properties we want. The next theorem shows that the
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SN -tree for T can be constructed efficiently.
Theorem 5. The time complexity of Algorithm ComputeSNTree is O(n3).
Proof. By scanning all rooted triplets in T , we can construct GT in step 1 in

O(|T |) = O(n3) time. For step 2, the time complexity is O(|V (GT )| + |E(GT )|) =
O(n3). To build the SN -tree RT in step 3, we need two substeps. First, for each
node Ci ∈ V (G′

T ), we compute the set of all nodes that are reachable from Ci in G′
T .

By Corollary 2, |V (G′
T )| = O(n) and thus |E(G′

T )| = O(n2), so this takes O(n2) time
for each Ci using depth-first search, so O(n3) time in total. Next, we check, for each
(Ci, Cj) ∈ E(G′

T ), if there is a path of length at least 2 from Ci to Cj . If the answer
is no, then (Ci, Cj) is an edge in RT . Each such check can be performed in O(n) time
by asking if Cj is reachable from any of the children (except Cj itself) of Ci. Since
there are O(n2) edges, we can check all edges in O(n3) time. Thus, the algorithm’s
total running time is O(n3).

3.2. Algorithm FastGalledNetwork. The main algorithm of this section, Al-
gorithm FastGalledNetwork, is listed in Figure 6. The key observation is that a galled
network consistent with T (if one exists) can be obtained from the SN -tree for T by
replacing each internal node of degree 3 or higher with a subnetwork whose structure
is inferred by Algorithm SimpleNetworks.

Recall that for any node u in a rooted, leaf-labeled tree R, R[u] is the subtree of R
rooted at u, and Λ(R[u]) denotes the set of leaves in R[u]. Below, T |u is shorthand
for the set T |Λ(R[u]).

In step 1, FastGalledNetwork computes the SN -tree R for T using Algorithm
ComputeSNTree from section 3.1. Then, in steps 2 and 3, it tries to construct a
galled network Nu consistent with all rooted triplets in T |u for each node u in R
in bottom-up order. If successful, it returns Nr, where r is the root of R (note
that T = T | r); otherwise, it returns null. To obtain Nu for any node u in R,
FastGalledNetwork proceeds as follows. Let q be the degree of u and denote the
children of u by {u1, u2, . . . , uq}. If q = 0, then let Nu be a network consisting
of one leaf, labeled by u. If q = 2, then form Nu by joining the roots of Nu1

and Nu2
to a new root node. Otherwise, q ≥ 3 by Lemma 13. In this case, let

α1, α2, . . . , αq be q new symbols not in L, and define a function f as follows. For
every x ∈ Λ(R[u]), let f(x) = αi, where x ∈ Λ(R[ui]). Next, define T ′ as the set{
({f(x), f(y)}, f(z)) : ({x, y}, z) ∈ (T |u) and f(x), f(y), f(z) all differ

}
, and apply

Algorithm SimpleNetworks from section 2 to T ′. If there is a simple phylogenetic
network N ′ consistent with T ′, then replace each αi in N ′ with Nui and let Nu be
the resulting network; otherwise, terminate and output null.

The correctness of this method follows from the next two lemmas.
Lemma 14. For any node u in R, if T |u is consistent with a galled network with

leaf set Λ(R[u]) and if q ≥ 3, then there exists a simple network consistent with T ′.
Proof. Let M be a galled network with leaf set Λ(R[u]) consistent with T |u.

First we show that if q ≥ 3, then the root r of M must be a split node. Suppose r is
not a split node and let A and B be the disjoint sets of leaves in the two subnetworks
rooted at the children of r. For every child ui of u, we have either Λ(R[ui]) ⊆ A
or Λ(R[ui]) ⊆ B (otherwise, let a, b be two leaves in Λ(R[ui]) such that a ∈ A and
b ∈ B; for each x ∈ Λ(R[u]) \ {a, b}, at least one of ({a, x}, b) and ({b, x}, a) belongs
to T |u since T is dense, so x ∈ Λ(R[ui]), i.e., Λ(R[ui]) = Λ(R[u]), which is not
possible). Since q ≥ 3, there exist i, j, k where i, j, k differ such that both Λ(R[ui])
and Λ(R[uj ]) are subsets of one of A and B, and Λ(R[uk]) is a subset of the other.
Assume without loss of generality that Λ(R[ui]),Λ(R[uj ]) ⊆ A and Λ(R[uk]) ⊆ B.
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Algorithm FastGalledNetwork

Input: A dense set T of rooted triplets with a leaf set L.

Output: A galled network consistent with T , if one exists; otherwise, null.

1 Let R = ComputeSNTree(T ).

2 Define Nu for every leaf u in R to be a single node labeled by u.

3 for each nonleaf node u in R, in bottom-up order do

/* Construct a galled network Nu for the set of leaves in Λ(R[u]). */

3.1 Denote the set of children of u in R by {u1, u2, . . . , uq}.
3.2 If q = 2, let Nu be a network with a root node joined to Nu1 and Nu2 .

3.3 Otherwise (q ≥ 3), build T ′ from T |u, compute N = SimpleNetworks(T ′), and
check if N is empty; if yes then return null, else select any N ′ ∈ N and form
a network Nu by replacing each αi in N ′ with Nui .

endfor

4 return Nr, where r is the root of R.
End FastGalledNetwork

Fig. 6. Constructing a galled phylogenetic network consistent with a dense set T of rooted triplets.

For any x, y ∈ A and bk ∈ Λ(R[uk]), T cannot contain ({x, bk}, y) or ({y, bk}, x), so
SN({ai, aj}) is a proper subset of SN({ai, bk}) for every ai ∈ Λ(R[ui]), aj ∈ Λ(R[uj ]).
However, u is the lowest common ancestor in R of {ai, aj} as well as of {ai, bk}, so
SN({ai, aj}) = SN({ai, bk}) by Theorem 4, which is a contradiction. Hence, r is a
split node.

Next, observe that each side network of M can contain leaves from only one R[ui].
To see this, let M [v] be a side network of M . For any i, j with i �= j, if M [v] contains a
leaf a ∈ Λ(R[ui]) and a leaf b ∈ Λ(R[uj ]), then since T is dense, Λ(R[ui]) � SN({a, b})
and Λ(R[uj ]) � SN({a, b}) by Lemma 7 while SN({a, b}) �= Λ(R[u]) (otherwise,
M [v] cannot be a side network of M), contradicting the maximality of Λ(R[ui])
and Λ(R[uj ]) in Λ(R[u]).

By the preceding two paragraphs, the root of M is a split node of some hybrid
node h, and each side network attached to a merge path of h contains leaves from only
one Λ(R[ui]). We now show that there exists a galled network M∗ consistent with T |u
such that for every i, all leaves in Λ(R[ui]) belong to only one side network of M∗

attached to a merge path of h. Suppose M has two side networks M [v] and M [w]
attached to merge paths of h such that both M [v] and M [w] contain leaves from the
same Λ(R[ui]). M [v] and M [w] must be attached to the same merge path p of h (oth-
erwise, Λ(R[ui]) = Λ(R[u]), which is impossible), and, furthermore, all side networks
attached to p between M [v] and M [w] contain leaves from Λ(R[ui]) only. Thus, all side
networks containing leaves from the same Λ(R[ui]) are consecutively ordered along
one merge path of h and can therefore be concatenated into one side network in such
a way that all rooted triplets involving Λ(R[ui]) are still consistent with it (note that
T does not contain any rooted triplet of the form ({a, x}, b) where a, b ∈ Λ(R[ui]) and
x is located in a side tree of M below the side trees leaf-labeled by Λ(R[ui])). Let M∗

be the resulting galled network consistent with T |u such that each side network M∗
i

attached to a merge path of h is bijectively leaf-labeled by one Λ(R[ui]).

Finally, construct a simple phylogenetic network M ′ from M∗ by replacing each
M∗

i by a leaf labeled by αi. M ′ is consistent with T ′, which can be seen as follows.
Let t′ be any rooted triplet in T ′ and write t′ = ({αi, αj}, αk). Then there exists
some rooted triplet t = ({x, y}, z) in T such that x ∈ Λ(R[ui]), y ∈ Λ(R[uj ]), and
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z ∈ Λ(R[uk]), where i, j, k all differ. t is consistent with M∗, so t′ is consistent with M ′

by the construction of M ′. Hence, T ′ and M ′ are consistent.
Lemma 15. Let u be any node in R and suppose each T |ui is consistent with

a galled network Nui
. If q = 2, then the galled network obtained by joining the roots

of Nu1 and Nu2 to a new root node is consistent with T |u. If q ≥ 3 and T ′ is
consistent with a simple network N ′ with leaf set {α1, α2, . . . , αq}, then the galled
network Nu obtained from N ′ by replacing each αi by Nui

is consistent with T |u.
Proof (analogous to the proof of Lemma 8 in [15]). Consider any rooted triplet t

in T |u and write t = ({x, y}, z). If x ∈ Λ(R[ui]), y ∈ Λ(R[uj ]), and z ∈ Λ(R[uk]),
where i, j, k all differ, then t is consistent with Nu (otherwise, t′=({f(x), f(y)}, f(z)) =
({αi, αj}, αk) cannot be consistent with N ′ which is a contradiction since t′ ∈ T ′).
If x, y ∈ Λ(R[ui]) and z ∈ Λ(R[uj ]) with i �= j, then t is consistent with Nu by the
construction of Nu. The case x, z ∈ Λ(R[ui]) and y ∈ Λ(R[uj ]) (or symmetrically,
y, z ∈ Λ(R[ui]) and x ∈ Λ(R[uj ])) with i �= j is not possible because then y would
not belong to SN({x, z}) by Theorem 4, contradicting that y ∈ SN({x, z}) according
to the definition of SN -sets. Finally, if x, y, z belong to the same Λ(R[ui]), then t
is consistent with Nui and therefore with Nu. In all possible cases, t is consistent
with Nu.

We now analyze the running time of FastGalledNetwork.
Theorem 6. The time complexity of Algorithm FastGalledNetwork is O(n3).
Proof. Step 1 takes O(n3) by Theorem 5. For every node u in R with deg(u) < 3,

Nu can be constructed in O(1) time. The total time for constructing all networks Nu

with deg(u) ≥ 3 is given by the total time needed to build all the T ′-sets plus the
total time taken by all calls to SimpleNetworks; both of these are shown below to be
O(n3). Thus, the theorem follows.

First note that to construct T ′ for a node u, we need to consider only rooted
triplets in T whose three leaves belong to subtrees rooted at three different children
of u. For this purpose, we may create a list T (u) for each node u in R containing all
rooted triplets in T of the form ({x, y}, z) such that u is the lowest common ancestor
in R of x, y, and z. All the T (u)-lists can be constructed using an additional O(n3)
time after computing the SN -tree R in step 1 by doing a bottom-up traversal of R.
Then, when constructing T ′ in step 3.3, check each rooted triplet in T (u) to see if its
leaves belong to three different subtrees, and if so, update T ′ accordingly. This way,
each rooted triplet in T is considered for one T ′-set only, so the total time required
to build all T ′-sets is bounded by O(n3).

Next, note that each constructed T ′ has deg(u) leaves. Running SimpleNetworks
on T ′ therefore takes O((deg(u))3) time by Theorem 1. Summing over all nodes, the
calls to SimpleNetworks take a total of

∑
u∈R O((deg(u))3) = O((

∑
u∈R deg(u))3) =

O(n3) time.
Finally, we remark that FastGalledNetwork can be modified to return all galled

networks consistent with T by utilizing all simple networks computed in step 3.3.
However, this may take exponential time.

4. NP-hardness of the nondense case. We now prove that the problem of
inferring a galled phylogenetic network which is consistent with a given set of T rooted
triplets, if one exists, is NP-hard when T is not required to be dense. Our proof
consists of a polynomial-time reduction from the NP-complete problem Set Splitting
(see, e.g., [5]) to the decision version of our problem. We use the same reduction
to prove that the closely related problem of inferring a simple phylogenetic network
which is consistent with a given (nondense) set of rooted triplets is also NP-hard.
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Set Splitting. Given a set S = {s1, s2, . . . , sn} and a collection C = {C1, C2, . . . ,
Cm} of subsets of S, where |Cj | = 3 for every Cj ∈ C, does (S, C) have a set splitting;
i.e., can S be partitioned into two disjoint subsets S1, S2 such that for every Cj ∈ C
it holds that Cj is not a subset of S1 and Cj is not a subset of S2?

First, we describe the reduction from Set Splitting. Given an instance (S, C),
where we assume without loss of generality that

⋃
Cj∈C Cj = S, construct a nondense

set T of rooted triplets having a leaf set L with L = {h, x, y} ∪ {sji | si ∈ S, 1 ≤ j ≤
m}, where h, x, y, and all elements of the form sji are new elements not belonging to S.
Initially, let T consist of the two rooted triplets ({x, h}, y) and ({y, h}, x). Next, for
each Cj ∈ C, write Cj = {sa, sb, sc} with a < b < c and include three rooted triplets

({sja, h}, s
j
b), ({sjb, h}, sjc), and ({sjc, h}, sja) in T . Finally, for each si ∈ S, add m rooted

triplets ({s1
i , s

2
i }, h), ({s2

i , s
3
i }, h), . . . , ({sm−1

i , smi }, h), ({smi , s1
i }, h) and 2m rooted

triplets ({s1
i , h}, x), ({y, h}, s1

i ), ({s2
i , h}, x), ({y, h}, s2

i ), . . . , ({smi , h}, x), ({y, h}, smi )
to T . (The main idea in the reduction is to encode C by rooted triplets of the form
({sja, h}, s

j
b) and use other rooted triplets to force any galled network N consistent

with T to have a special structure; see Lemma 17. Then, for each Cj = {sa, sb, sc} ∈ C,

at most two of sja, s
j
b, s

j
c can descend from the same clipped merge path from the root

in N , inducing a set splitting of S.)

Lemma 16. If (S, C) has a set splitting, then there exists a simple phylogenetic
network which is consistent with T .

Proof. Let (S1, S2) be a set splitting of (S, C). Define S∗
1 = {sji | si ∈ S1, 1 ≤

j ≤ m} and S∗
2 = {sji | si ∈ S2, 1 ≤ j ≤ m}. Note that S∗

1 ∪ S∗
2 ∪ {h, x, y} = L. Let

O1 be any ordering of S∗
1 ∪ {x} in which x is the first element, and for every pair of

elements of the form sja and sjb in S∗
1 , if there exists a Cj in C with Cj = {sa, sb, sc}

and either b < a < c, a < c < b, or c < b < a, then sja precedes sjb. (Except for this
requirement, the elements may be ordered arbitrarily in O1.) Define an ordering O2

of S∗
2 ∪ {y} analogously, letting y be the last element in O2, respectively. Next, build

a simple phylogenetic network N having a root node r and a hybrid node whose child
is a leaf labeled by h, where (1) |S∗

1 | + 1 leaves distinctly labeled by S∗
1 ∪ {x} are

attached to the left clipped merge path in order according to O1, and |S∗
2 | + 1 leaves

distinctly labeled by S∗
2 ∪ {y} are attached to the right clipped merge path in order

according to O2. See Figure 7 for an example. It is easy to verify that N and T are
consistent.

To prove the other direction (i.e., that a galled network consistent with T yields
a set splitting of (S, C)), we need the following lemma.

Lemma 17. Suppose N is a galled network with leaf set L which is consistent
with T . Then (1) the root r of N is a split node, (2) one side network attached to
a merge path of r contains h but no other leaves, and (3) h is a descendant of the
hybrid node for r.

Proof. (1) Suppose r is not a split node. Then L can be partitioned into two
disjoint, nonempty subsets U and V such that every path between a leaf in U and a
leaf in V passes through r. It follows that for any rooted triplet ({a, b}, c) which is
consistent with N , if a ∈ U , then b ∈ U , and if a ∈ V , then b ∈ V . Now consider
any element of the form sji in L. If sji ∈ U , then h, x, y ∈ U because N is consistent

with ({sji , h}, x), ({x, h}, y), and ({y, h}, sji ). But then also skz ∈ U for every skz in L

by ({skz , h}, x) ∈ T , contradicting that V is nonempty. The case sji ∈ V is analogous.
Hence, r must be a split node.

(2) Let N ′ be the side network attached to a merge path of r such that h ∈ Λ(N ′).
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Fig. 7. Let C1 = {s1, s2, s3}, C2 = {s1, s3, s4}, and C3 = {s2, s3, s4}, and suppose S1 =
{s1, s3} and S2 = {s2, s4}. The construction described in Lemma 16 yields a simple phylogenetic
network N as shown above.

If x ∈ Λ(N ′), then Λ(N ′) = L because y ∈ Λ(N ′) by ({y, h}, x) ∈ T and for every
element of the form sji in L, it holds that sji ∈ Λ(N ′) by ({sji , h}, x) ∈ T . If y ∈
Λ(N ′), then Λ(N ′) = L because of x ∈ Λ(N ′) by ({x, h}, y) ∈ T and the above. If
Λ(N ′) contains an element of the form sji , then Λ(N ′) = L because of y ∈ Λ(N ′) by

({y, h}, sji ) ∈ T and the above. Thus, if Λ(N ′) contains any element in addition to h,
then Λ(N ′) = L, which is not possible. Therefore, Λ(N ′) = {h}.

(3) By (1), r is a split node of N . Let hn(r) be the hybrid node for r and let
N ′ be the subnetwork of N rooted at hn(r). Suppose, on the contrary, that h is not
contained in N ′. Take any Cj ∈ C and write Cj = {sa, sb, sc} with a < b < c. Since

({sja, h}, s
j
b), ({sjb, h}, sjc), and ({sjc, h}, sja) are in T and h �∈ Λ(N ′), exactly one of sja,

sjb, and sjc belongs to Λ(N ′). Assume without loss of generality that sja ∈ Λ(N ′). Next,
neither x nor y can belong to the same side network as h by (2), and since ({x, h}, y)
and ({y, h}, x) are consistent with N , we have either x ∈ Λ(N ′) and y �∈ Λ(N ′) or
x �∈ Λ(N ′) and y ∈ Λ(N ′). If x ∈ Λ(N ′), then ({sja, h}, x) is not consistent with N ,
and if y ∈ Λ(N ′), then ({y, h}, sja) is not consistent with N , which is a contradiction
in both cases. Therefore, h ∈ Λ(N ′).

Lemma 18. If there exists a galled network which is consistent with T , then (S, C)
has a set splitting.

Proof. Let N be a galled network with leaf set L that is consistent with T . By
Lemma 17, the root r of N is a split node. Also by Lemma 17, the subnetwork of N
rooted at the child of hn(r), where hn(r) denotes the hybrid node for r, consists of
a single leaf which is labeled by h. Let P1 and P2 be the two clipped merge paths
of hn(r), and define L1 and L2 as the set of all leaves except x, y, and h which
are descendants of nodes on P1 and P2, respectively. We now show that (L1, L2)
induces a set splitting (S1, S2) of (S, C). For every si ∈ S, if s1

i belongs to L1, then
all elements in {ski | 1 ≤ k ≤ m} belong to L1 because ({s1

i , s
2
i }, h), ({s2

i , s
3
i }, h), . . . ,

({sm−1
i , smi }, h), ({smi , s1

i }, h) ∈ T . Similarly, if s1
i ∈ L2, then {ski | 1 ≤ k ≤ m} ⊆ L2.

Define S1 = {si | s1
i ∈ L1} and S2 = {si | s1

i ∈ L2}. Clearly, S1 ∪ S2 = S and
S1 ∩ S2 = ∅. Moreover, for every Cj ∈ C, it holds that Cj �⊆ S1 and Cj �⊆ S2 (to
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see this, write Cj = {sa, sb, sc} with a < b < c and note that if all of sa, sb, and

sc belonged to just one of S1 and S2, then sja, s
j
b, and sjc would be descendants of

nodes on the same clipped merge path of hn(r), and then all three rooted triplets
({sja, h}, s

j
b), ({sjb, h}, sjc), and ({sjc, h}, sja) could never be consistent with N , which is

a contradiction). Thus, (S1, S2) is a set splitting of (S, C).

Theorem 7. Given any nondense set T of rooted triplets, it is NP-hard to
determine if there exists a galled network which is consistent with T . It is also NP-
hard to determine if there exists a simple network which is consistent with T .

Proof. If (S, C) has a set splitting, then there exists a simple network which is
consistent with T according to Lemma 16. Next, Lemma 18 shows that if there exists
a galled network consistent with T , then (S, C) has a set splitting. Since a simple
phylogenetic network is always a galled network, and the reduction can be carried out
in polynomial time, the theorem follows.

5. Approximating the maximum number of consistent rooted triplets.
This section studies the problem of constructing a galled network consistent with the
maximum number of rooted triplets in T for any (not necessarily dense) given T . Sec-
tion 5.2 presents a polynomial-time approximation algorithm for this problem which
always outputs a galled network consistent with at least a factor of 5

12 (> 0.4166)
of the rooted triplets in T . On the negative side, section 5.1 shows that there exist
inputs for which any galled network can be consistent with at most a factor of 0.4883
of the rooted triplets in T .

5.1. Inapproximability result. Given any positive integer n, fix T to contain
all possible rooted triplets for a leaf set L of size n, that is, T =

{
({a, b}, c), ({a, c}, b),

({b, c}, a) | a, b, c ∈ L
}
. For any phylogenetic network N , let #N denote the number

of rooted triplets from T that are consistent with N .

Lemma 19. Let N be a galled network with Λ(N) = L. If N contains a nonsplit
node u with two children u1, u2 such that u is the root node or a child of a hybrid node,
then making u into a split node by removing the edges (u, u1) and (u, u2), adding two
new nodes v and w, and inserting the edges (u, v), (u,w), (v, u1), (w, u2), and (v, w)
yields a galled network N ′ with #N ′ = #N .

Lemma 20. Let N be a galled network with Λ(N) = L. Suppose N contains a
merge path P of a hybrid node h, c is the child of h, N [u] is a side network attached
to P , u �= c, and u has two children u1, u2. Then one of the following holds:

• If |Λ(N [u])| > |Λ(N [c])|, then N can be transformed into a galled network N ′

with #N ′ > #N by letting N [u] and N [c] trade places.
• Else, if |Λ(N [u])| ≤ |Λ(N [c])|, then N can be transformed into a galled net-

work N ′ with #N ′ > #N as follows: First, in case u is a split node in N ,
delete a hybrid edge descending from u (and contract all edges from ver-
tices with outdegree 1) so that N [u1] and N [u2] become disjoint. Second,
remove N [u] and instead attach the resulting disjoint N [u1] and N [u2] to P .

Proof. Let s be the split node corresponding to h, and define Lu = Λ(N [u]),
Lc = Λ(N [c]), Lm = Λ(N [s]) \ (Lu ∪ Lc), and Lrest = L \ (Lu ∪ Lc ∪ Lm). First
consider the case |Λ(N [u])| > |Λ(N [c])|. For any subset {x, y, z} of L, we have the
following possibilities:

• When at least one of {x, y, z} belongs to Lrest, it is easy to see that N and N ′

are consistent with exactly the same rooted triplets labeled by {x, y, z}.
• When {x, y, z} contains at least two leaves from Lu or at least two leaves

from Lc, or when {x, y, z} contains three leaves from Lm, then N and N ′ are
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again consistent with exactly the same rooted triplets labeled by {x, y, z}.
• When {x, y, z} contains one leaf from Lu, one leaf from Lc, and one leaf

from Lm, then each of N and N ′ is consistent with exactly two rooted triplets
labeled by {x, y, z}.

• When {x, y, z} contains one leaf from Lu and two leaves from Lm, then N is
consistent with one rooted triplet labeled by {x, y, z}, whereas N ′ is consistent
with two.

• When {x, y, z} contains one leaf from Lc and two leaves from Lm, then N is
consistent with two rooted triplets labeled by {x, y, z}, whereas N ′ is consis-
tent with one.

Since |Lu| > |Lc|, the difference in number of consistent rooted triplets is given by

#N ′ − #N = |Lu| ·
(|Lm|

2

)
− |Lc| ·

(|Lm|
2

)
> 0.

Next consider the case |Λ(N [u])| ≤ |Λ(N [c])|. If u is a split node in N , then
delete a hybrid edge e descending from u so that the resulting Λ(N [u1]) and Λ(N [u2])
are disjoint; assume without loss of generality that e is a descendant of u2. In ad-
dition to the above, define Lu1 = Λ(N [u1]) and Lu2

= Λ(N [u]) \ Λ(N [u1]). For any
subset {x, y, z} of L, we have the following possibilities:

• When at least one of {x, y, z} belongs to Lrest, then N and N ′ are consistent
with exactly the same rooted triplets labeled by {x, y, z}.

• When {x, y, z} does not contain at least one leaf from Lu1 and at least one
leaf from Lu2

, then N and N ′ are consistent with the same number of rooted
triplets labeled by {x, y, z}.

• When {x, y, z} contains one leaf from Lu1 , one leaf from Lu2 , and one leaf
from Lm, then each of N and N ′ is consistent with one rooted triplet labeled
by {x, y, z}.

• When {x, y, z} contains one leaf from Lu1
, one leaf from Lu2

, and one leaf
from Lc, then N is consistent with one rooted triplet labeled by {x, y, z},
whereas N ′ is consistent with two.

• When {x, y, z} contains two leaves from Lu1 and one leaf from Lu2 , or one
leaf from Lu1 and two leaves from Lu2 , then N is consistent with one or two
rooted triplets labeled by {x, y, z}, whereas N ′ is consistent with one.

Since |Lc| ≥ |Lu|, |Lu| ≥ |Lu1
|, and |Lu| ≥ |Lu2

|, the difference in number of

consistent rooted triplets satisfies #N ′ −#N ≥ |Lu1 | · |Lu2 | · |Lc| −
(|Lu1 |

2

)
· |Lu2 | −

|Lu1 | ·
(|Lu2

|
2

)
≥ 1

2 · |Lu1 | · |Lu2 | · (2 · |Lu| − |Lu1 | − |Lu2 | + 2) > 0.

By repeatedly applying Lemmas 19 and 20, the next lemma concludes that for
any fixed n, at least one of the galled networks N for a set of n leaves that maximizes
#N must be a caterpillar network. A galled network N is called a caterpillar network
if (1) the root of N and every nonleaf child of a hybrid node are split nodes and (2) for
every merge path P in N , all side networks attached to P except for the one at the
hybrid node are leaves.

Lemma 21. For any galled network N , there is a caterpillar network N ′ with
Λ(N ′) = Λ(N) and #N ′ ≥ #N .

Now, we are ready to show the bound on the approximation ratio. Let S(n) be
the maximum value of #N taken over all galled networks N with n leaves.

Lemma 22. S(n) = max1≤a≤n

{(
a
3

)
+ 2 ·

(
a
2

)
· (n− a) + a ·

(
n−a

2

)
+ S(n− a)

}
.

Proof. By Lemma 21, there is a caterpillar network N that maximizes #N among
all galled networks with n leaves. The recurrence for S(n) counts the maximum
number of rooted triplets in T consistent with a caterpillar network with n leaves
because if such a network contains a set A of a leaves attached to the two merge
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paths starting at the root, then it must be consistent with
•
(
a
3

)
rooted triplets labeled by three elements in A;

• 2 ·
(
a
2

)
· (n− a) rooted triplets labeled by two elements in A and one element

in L \A;
• a·

(
n−a

2

)
rooted triplets labeled by one element in A and two elements in L\A;

• S(n− a) rooted triplets labeled by three elements in L \A.
Theorem 8. There is no approximation algorithm with approximation ratio

larger than 0.4883.
Proof. Define T (n) = |T | for any given positive integer n, i.e., T (n) = 3 ·

(
n
3

)
.

Note that the approximation ratio can be at most minn∈Z+
S(n)
T (n) . By inserting n =

1000 into the recurrence in Lemma 22, we obtain S(1000) = 243383298. Hence, the

approximation ratio must be less than or equal to S(1000)
T (1000) < 0.4883.

5.2. A polynomial-time 5
12

-approximation algorithm. Given any set T of
rooted triplets, our approximation algorithm called Approximate (shown in Figure 8)
infers a galled network which is consistent with at least 5

12 of the rooted triplets in T .
We first describe the algorithm and then present the analysis.

Initially, Approximate partitions the set of leaves L into three subsets A,B,C
so that none of them equals L using an algorithm named LeafPartition (also listed
in Figure 8 and described in detail below). Then, for each X ∈ {A,B,C}, it re-
cursively infers a galled network KX by calling Approximate(T |X). Next, for each
X ∈ {A,B,C}, it generates a galled network NetworkX such that the root node is
a split node whose hybrid node is the parent of KX , and the other two networks in
{KA,KB ,KC} \ {KX} are side networks. Finally, it returns the best network among
NetworkA, NetworkB , and NetworkC .

We now explain the algorithm LeafPartition. It divides L into the three sub-
sets A,B,C in such a way that a special condition 5N1 +8N2 +12N3 ≥ 5 · |T | holds,
where for i ∈ {0, 1, 2, 3}, we define Ni = |Zi(A,B,C)| and where Zi(A,B,C) is the
set defined as follows:

• Z0(A,B,C) = {({x, y}, z) ∈ T | x and z are in one of the subsets A,B,C
and y is in another};

• Z1(A,B,C) = {({x, y}, z) ∈ T | x, y, and z are in one of the subsets A,B,C};
• Z2(A,B,C) = {({x, y}, z) ∈ T | x, y, and z are in three different subsets

among A,B,C};
• Z3(A,B,C) = {({x, y}, z) ∈ T | x and y are in one of the subsets A,B,C

and z is in another}.
Note that Z0(A,B,C) ∪ Z1(A,B,C) ∪ Z2(A,B,C) ∪ Z3(A,B,C) = T . As shown
below, any A,B,C which imply 5N1 + 8N2 + 12N3 ≥ 5 · |T | guarantee a good
approximation ratio for Approximate. Algorithm LeafPartition is a greedy algorithm
which first divides L into the three subsets arbitrarily and then moves leaves (one at
a time) from one subset to another until score(A,B,C) cannot be further improved,
where we define score(A,B,C) = 4N1 + 7N2 + 12N3. If one of the subsets, say A,
equals L after finishing moving the leaves, then it selects a leaf u that maximizes
p(u)
c(u) , where p(u) = |{({x, y}, u) ∈ T}| and c(u) = |{({u, x}, y) ∈ T }|, and moves

u from A to either B or C. (This step is to ensure that none of the three subsets
equals L.) The next lemma shows that this extra move does not reduce the value of
score(A,B,C). Since score keeps increasing by at least 1 as long as the while-loop
iterates and score(A,B,C) ≤ 12 · |T |, step 2.1 is performed at most 12 · |T | times in
total; i.e., the algorithm is guaranteed to terminate.
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Algorithm LeafPartition

Input: A set T of rooted triplets with a leaf set L.

Output: A partition of L into three subsets A,B,C such that none of them equals L
and such that 5N1 + 8N2 + 12N3 ≥ 5 · |T |.

1 Arbitrarily partition L into three subsets A,B,C.

2 while moving a leaf m from one subset to another increases score(A,B,C) =
4N1 + 7N2 + 12N3 do

2.1 Move m accordingly.

endwhile

3 if one of the subsets A,B,C equals L then

3.1 Choose a leaf u that maximizes p(u)
c(u)

and move u to another subset. Go to Step 2.

endif

4 return A,B,C.
End LeafPartition

Algorithm Approximate

Input: A set T of rooted triplets with a leaf set L.

Output: A galled network that is consistent with at least 5
12

· |T | of the rooted triplets
in T .

1 Partition L into A,B,C using LeafPartition.

2 For X ∈ {A,B,C}, let KX = Approximate(T |X).

3 For X ∈ {A,B,C}, generate a galled network NetworkX in which the root node is
a split node whose hybrid node h is the parent of KX , and the other two networks
in {KA,KB ,KC} \ {KX} are side networks attached to the merge paths of h.

4 return the NetworkX among X ∈ {A,B,C} that is consistent with the most rooted
triplets in T .

End Approximate

Fig. 8. An approximation algorithm for computing a galled network consistent with as many
rooted triplets in T as possible.

Lemma 23. Algorithm LeafPartition partitions L into three subsets A,B,C so
that score(A,B,C) cannot be further improved by moving a single element from one
subset to another.

Proof. If none of A,B,C equals L after step 2 in Algorithm LeafPartition is
done, the lemma follows. Hence, assume that one of the subsets, say A, equals L
after step 2. We only need to show that step 3.1 does not decrease score(A,B,C).
When u is moved from A, all rooted triplets in T of the form ({x, y}, u) are moved
from Z1(A,B,C) to Z3(A,B,C) and all rooted triplets in T of the form ({u, x}, y) are
moved from Z1(A,B,C) to Z0(A,B,C). The difference in score is equal to score(A \
{u}, {u}, ∅)−score(A, ∅, ∅) = p(u) · (12−4)− c(u) ·4 ≥ 0, where the last inequality
follows since p(u) ≥ 1

2 · c(u) by the choice of u. Thus, step 3.1 will not decrease
score(A,B,C).

The next two lemmas are needed to analyze the approximation ratio of Approxi-
mate.

Lemma 24. When Algorithm LeafPartition terminates, we have 5N1 + 8N2 +
12N3 ≥ 5 · |T |.

Proof. Write score(A,B,C) = x·N1+y ·N2+z ·N3. For any U, V,W ∈ {A,B,C},
denote by ({U, V },W ) the set of all rooted triplets in T of the form ({u, v}, w) where
u ∈ U , v ∈ V , and w ∈ W . Similarly, for any m ∈ L and U, V ∈ {A,B,C}, let
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({m,U}, V ) and ({U, V },m) denote the set of all rooted triplets in T of the form
({m,u}, v) and ({u, v},m), respectively, where u ∈ U and v ∈ V . For each of the six
possible ways of moving a leaf m from one of the subsets A,B,C to another, we can
derive a formula to express how score is affected, as described next.

First, suppose m is moved from A to B. Then, for every element t in ({m,A}, A),
since t will be moved from Z1(A,B,C) to Z0(A,B,C), the corresponding change in
score is −x. In the same way, we can calculate the change in score for each element
in ({m,U}, V ) and ({U, V },m) for every U, V ∈ {A,B,C} when m is moved from A
to B. After LeafPartition is done, moving m will not increase the value of score, so
score(A\{m}, B∪{m}, C) − score(A,B,C) ≤ 0. Thus, we have −x|({m,A}, A)|−
z|({m,A}, B)| + (y − z)|({m,A}, C)| + z|({m,B}, A)| + x|({m,B}, B)| + (z − y)|
({m,B}, C)|+y|({m,C}, A)|−y|({m,C}, B)|+0·|({m,C}, C)|+(z−x)|({A,A},m)|+
0 · |({A,B},m)|+ y|({A,C},m)|+(x− z)|({B,B},m)|− y|({B,C},m)|+0 · |({C,C},
m)| ≤ 0.

Next, by summing over all m ∈ A, we obtain the following inequality IAB :

IAB : −2x|({A,A}, A)| − 2z|({A,A}, B)| + 2(y − z)|({A,A}, C)| + z|({A,B}, A)| +
x|({A,B}, B)|+ (z − y)|({A,B}, C)|+ y|({A,C}, A)| − y|({A,C}, B)|+ (z −
x)|({A,A}, A)| + y|({A,C}, A)| + (x− z)|({B,B}, A)| − y|({B,C}, A)| ≤ 0.

In the summation, each element of the form ({a1, a2}, x) where a1, a2 ∈ A is counted
twice; therefore, the coefficient of each |({A,A}, x)| is multiplied by 2.

We derive five inequalities IAC , IBA, IBC , ICA, and ICB analogously. Finally,
we add IAB , IAC , IBA, IBC , ICA, and ICB together, and use N0 = |({A,B}, A)| +
|({A,B}, B)| + |({A,C}, A)| + |({A,C}, C)| + |({B,C}, B)| + |({B,C}, C)|, N1 =
|({A,A}, A)| + |({B,B}, B)| + |({C,C}, C)|, N2 = |({A,B}, C)| + |({A,C}, B)| +
|({B,C}, A)|, and N3 = |({A,A}, B)|+ |({A,A}, C)|+ |({B,B}, A)|+ |({B,B}, C)|+
|({C,C}, A)| + |({C,C}, B)| to obtain (z + 2y + x) ·N0 + (2z − 6x) ·N1 + (2z − 6y) ·
N2 + (2y+x− 5z) ·N3 ≤ 0. By substituting N0 = |T | −N1 −N2 −N3 and replacing
x = 4, y = 7, z = 12, we get 5N1 + 8N2 + 12N3 ≥ 5 · |T |.

Let m(T ) be the number of rooted triplets in T consistent with the network
returned by Approximate(T ).

Lemma 25. If m(T |Z) ≥ q · |T |Z| for every Z ∈ {A,B,C}, then m(T ) ≥
q ·N1 + 2

3 ·N2 + N3.

Proof. Every rooted triplet in Z2(A,B,C) is consistent with two of NetworkA,
NetworkB , and NetworkC , and every rooted triplet in Z3(A,B,C) is consistent with
all of these three networks. Thus, NetworkX returned by Approximate must be
consistent with at least 2

3 ·N2 +N3 of the rooted triplets in Z2(A,B,C)∪Z3(A,B,C).
Also, each of NetworkA, NetworkB , and NetworkC is consistent with m(T |A) +
m(T |B) + m(T |C) ≥ q · (|T |A| + |T |B| + |T |C|) = q · N1 of the rooted triplets
in Z1(A,B,C). Thus, in total, NetworkX is consistent with at least q ·N1+ 2

3 ·N2+N3

rooted triplets in T .

Theorem 9. m(T ) ≥ 5
12 · |T |.

Proof. By induction on |L|. Base case (|L| = 3): Steps 3 and 4 of Algorithm
Approximate construct a network consistent with at least 2/3 of the rooted triplets
in T ; i.e., m(T ) ≥ 5

12 · |T |. Inductive case (|L| > 3) Step 2 of Approximate recursively
constructs three networks KA,KB ,KC for T |A, T |B, and T |C, respectively. By the
induction assumption, m(T |X) ≥ 5

12 · |T |X| for each X ∈ {A,B,C}. By Lemmas 24
and 25, m(T ) ≥ 5

12 ·N1 + 2
3 ·N2 + N3 ≥ 5

12 · |T |.
Finally, the algorithm’s running time is given by the following theorem.

Theorem 10. The time complexity of Algorithm Approximate is O(n · |T |3).
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Proof. Denote by t(T ) and f(T ) the running times of Approximate(T ) and Leaf-
Partition(T ), respectively. We have t(T ) = f(T ) + t(T |A) + t(T |B) + t(T |C).

In LeafPartition, step 2 is performed at most 12 · |T | times in total. Every time,
the algorithm needs to compute O(n) values of score, and each score can be computed
in O(|T |) time. Steps 1 and 3 can easily be implemented in O(|T |) time. Therefore,
f(T ) = O(n · |T |2).

Furthermore, |T |A|+ |T |B|+ |T |C| < |T |. Solving the recurrence for t(T ) gives
us t(T ) = O(n · |T |3).
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evolutionary trees, J. Comb. Optim., 3 (1999), pp. 183–197.

[8] D. Gusfield, S. Eddhu, and C. Langley, Optimal, efficient reconstruction of phylogenetic
networks with constrained recombination, J. Bioinform. Comput. Biol., 2 (2004), pp. 173–
213.

[9] J. Hein, Reconstructing evolution of sequences subject to recombination using parsimony, Math.
Biosci., 98 (1990), pp. 185–200.

[10] M. R. Henzinger, V. King, and T. Warnow, Constructing a tree from homeomorphic sub-
trees, with applications to computational evolutionary biology, Algorithmica, 24 (1999), pp.
1–13.

[11] J. Holm, K. de Lichtenberg, and M. Thorup, Poly-logarithmic deterministic fully-dynamic
algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity, J. ACM,
48 (2001), pp. 723–760.
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