
COLOR MEMORY MAPPED SCREEN GIOS SKELETON CONFIGURATION GUIDE For CP/M-86 & CCP/M-86Page 1

������������	�
�������������
��������������
 ��!#"���$�%

WHO IS THIS FOR
WHAT TOOLS ARE REQUIRED
HOW TO MODIFY THE SKELETON

STAGE 1
STAGE 2
STAGE 3
ADDING A MOUSE

This document describes how to implement a color screen GRAPHICS
INPUT OUTPUT SYSTEM (gios). The hardware addressed by this
skeleton must have the following characteristics. This skeleton has
only been implemented on one target device and as such is not as well
tested as the monochrome skelton. Note that it has been run through
the entire test suite and has run will all DRI gsx based applications. An
oem who feels that this skeleton will work on their hardware or that it
is close, should contact DRI and we will consider implementing it so
as to firm up this skeleton. The kinds of areas not yet addressed in this
skeleton are, either two or four bit planes and oems without hardware
video lookup tables.
Processor8088,8086,80186

Display three bits/pixel bit map addressable by
processor.

processor may access bit map as though it were
normal memory. (wait states may be inserted).

http://www.df.lth.se/~pi/compis/cpm-manualer/gsx/writing_drivers/colrskel.html15:07:14 04/04/03

COLOR MEMORY MAPPED SCREEN GIOS SKELETON CONFIGURATION GUIDE For CP/M-86 & CCP/M-86Page 2

The display must use a byte as eight contiguous
pixels.

A scan line must be made up of a contiguous
sequence of bytes. (bytes may be swapped within
words)

The bit planes must be separate sections of
memory.

To build your gios you will require the following tools:
Assembler Rasm 86 from DRI
Linker Link 86 from DRI
CP/M 86 DebuggerDDT 86 from DRI
Skeleton COLMMSK.A86 (you modify)

COLMMRE.A86
COLMMOB1.OBJ
FONT.OBJ

Text editor <your choice>

In order to simplify the process of building and testing the skeleton,
we will do it in several stages.

Upon completion of this stage your driver will have all it's graphic
output primitives and their attribute routines functional. You will need
to edit the fileCOLMMSK.A86 this is the section which is required to be
customized. At the end of the section I will discuss how to modify the
monochrome device specific section to be used with the color
skeleton. The cp/m version of the monochrome device specific section
is particularly flexible in configuring the alphanumeric escape
functions. The first task is to modify the equates for your particular
hardware. We will now describe the equates in detail and define what
value you must place in each.

http://www.df.lth.se/~pi/compis/cpm-manualer/gsx/writing_drivers/colrskel.html15:07:14 04/04/03

COLOR MEMORY MAPPED SCREEN GIOS SKELETON CONFIGURATION GUIDE For CP/M-86 & CCP/M-86Page 3

& �'�')(&
This is the displayable x resolution of your screen. This equate is
used to inform the applications programmer how many
addressable points in the x axis are available. If you should have
more x axis information than can be displayed, then this value
should be only that which is displayed.��*�+���,.-���/

If you have a screen with 640 pixels in the x
direction the number returned here is 639.0 �'�')(&
This is the displayable y resolution of your screen. This equate is
used to inform the applications programmer how many
addressable points in the y axis are available. If you should have
more y axis information than can be displayed, then this value
should be only that which is displayed.��*�+���,.-���/

If you have a screen with 480 pixels in the y
direction the number returned here is 479.& ��21��
This number is the size of the pixel in microns in the x axis. An
empirical way to determine the correct value is to start with
xsize = 50. Then to draw a box on the screen once your driver is
functional useing an equal number of x,y increments. Measure
the size of the box and it's ratio is the size in microns in x to y.0 ��21��
This number is the size of the pixel in microns in the y axis.������3���4�35	6��7���45"
This is the segment address of the start of the first bit plane.������3���4�35	6��7���4�8
This is the segment address of the start of the second bit plane.������3���4�35	6��7���4�%
This is the segment address of the start of the third bit plane.3�	2��75��4�)��1��
This is the size of one of the graphics bit planes. It is used only
if the scan lines in the bit plane are not sequential. EXAMPLE
The IBM P.C. uses 16k or 4000h of memory for it's graphics. It
also breaks this memory into two 8k sections with even and odd
scan lines coming from alternate sections (segments). Thus the
IBM has a plane size of 4000h.(9):54<;��2�')�
This is set to either true or false as required. If the most
significant bit of a byte in the bit map is the leftmost on the
screen this should be set to TRUE else it is set to FALSE.: 0 �=��4��>���3
This is set to either true or false as required. If leftmost byte of a
scan line has an even address then this is FALSE else it is
TRUE.(9?5	2�@�2)�'�
This is set to either true or false as required. If sequential scan
lines on the screen come from sequential memory then this is
FALSE else it is TRUE. EXAMPLE The IBM PC requires a
TRUE due to the fact that even and odd scan lines come from
memory 2000h bytes apart. And is thus not sequential.75?�(94�)����

http://www.df.lth.se/~pi/compis/cpm-manualer/gsx/writing_drivers/colrskel.html15:07:14 04/04/03

COLOR MEMORY MAPPED SCREEN GIOS SKELETON CONFIGURATION GUIDE For CP/M-86 & CCP/M-86Page 4

If multiseg is true this is the number of segments into which the
bitmap is broken. Else it is set to 1.: 0 ����)4�	2��75�
This is the number of bytes per scan line in the bitmap. On some
machines this is different than the displayed number of bytes per
line. It is used to calculate how far to the next scan line in
memory.��������)4�	��27��
This is the number of ascii character columns on the screen
when in alphanumeric mode. For an 80 x 24 display this would
be an 80.	���75���4�3������
This is the number of ascii character rows on the screen when in
alphanumeric mode. For an 80 x 24 display this would be an 24.	������4���)����35�
This is the number of the last escape function implemented. This
is typically the same as last_dri_escape but if device specific
escapes are added then it will be the number of the last device
specific escape.	������4�A����24���)����3��
This is the last DRI escape function which is implemented.
Typically this is a 19.(9B�?5C�
This returns either a true or false. If a mouse driver is to be
included this should be set to TRUE else it is set to false.��?���>�� &
This sets 1/2 the size of the cross hair cursor in the x direction.
This and curwty should form a square cursor.��?���>�� 0
This sets 1/2 the size of the cross hair cursor in the y direction.
This and curwtx should form a square cursor.)�=����?5)4�	2��75�
This enables code which will turn off the status line in graphics
mode and on in alpha mode. Some machines will require this
such as the IBM P.C.

Now four routines must be written or modified to allow the gios to be
partially functional. They are each outlined below.
��)��;�7�85/

This is an escape function used to put the display into graphics
mode. It is called at OPEN WORKSTATION time and whenever
going into graphics mode. It should init the display to graphics
mode then call clearmem. If a mouse is present it should call
mouse_function to initialize the mouse.��B�7�������/
This is used to calculate the actual physical address in memory
from an x,y coordinate. The sample code given will work with
little change on many systems. If the y resolution is greater than
256 then a 16 bit multiply is required and one should exercise
caution since the ax,dx pairs are used as the result of this
operation. The entry and exit registers used and the values to be
returned in them should not be altered.��75�2��4�	2?��

http://www.df.lth.se/~pi/compis/cpm-manualer/gsx/writing_drivers/colrskel.html15:07:14 04/04/03

COLOR MEMORY MAPPED SCREEN GIOS SKELETON CONFIGURATION GUIDE For CP/M-86 & CCP/M-86Page 5

This routine is called at open workstation and is used to
initialize a hardware video lookup table. It is also responsible
for seting the realized table for each color index. These values
are used by the inquire color representation function. Please
refer to the sample driver for sample code which performs these
functions.	�B���A�4�	�?��
This routine is called by the set color representation function. It
is responsible for loading the requested color index in a
hardware lookup table with the closest color to the requested
value. It will then load the realized table with the realized color.

The driver may now begin testing. To build the driver userasm86 to
assemble the file you just edited. A file will automatically be included
into this which contains many highly optimized routines
(colmmre.a86). After obtaining no errors during assembly, link the
output of this assembly with monommob.obj and font.obj to create a
device driver. After setting up an assign.sys file with your driver as the
only device and numbered 01. TypeGRAPHICS then try running
testgios.cmd. This is done by typingRUN TESTGIOS. You should
recieve the first screen which is all graphics output. If problems arise
debugging is done quite simply. After runingGRAPHICS an address is
printed on the screen indicating where the driver was loaded. With
ddt86 you can look at this area and the bytes at 3 and 4 are the
segment address for the code. Since your modified file was linked first
it is the entry into your gios. When debugging the gios the first
instuction you will see is a jump into the main body of the code
(monommob.obj). This was done so as to simplify debugging. To
breakpoint your routine make a listing of your module after it is
assembled and the offset in the listing will be where you will place
your breakpoint in the gios.
DFE�GIHKJML NOHKNQP�RTS�NQUWVYXFV<ZOGIP�V\[Q]^V�P�GI_`GIP\[QV�P<abGINQHKE

To use the monochrome device specific section to start with, you will
need to add and remove some routines from it. You must first remove
the following external declarations.

plncol
wrmode
style
txtcol
txtclx
bakcol

You must next modify the clear memory routine to clear all three
bitplanes and not use the variable bakcol. The bitplanes should be
cleared using 0's. You must next add routines called init_lut and
load_lut. Init_lut is called to initialize any hardware lookup table and
to initialize the color realized table. Please refer to the sample color
device specific routines for an example. Load_lut is called when a set
color representation command is passed to the driver. It's function is to
modify the specified index in the hardware lookup table. Refer to the
color device specific file for an example of this.

http://www.df.lth.se/~pi/compis/cpm-manualer/gsx/writing_drivers/colrskel.html15:07:14 04/04/03

COLOR MEMORY MAPPED SCREEN GIOS SKELETON CONFIGURATION GUIDE For CP/M-86 & CCP/M-86Page 6

Upon completion of this stage your driver will have all it's
alphanumeric escapes functional. Most of the escapes are table driven
and should be very simple to customize. The escape table is found at
the end of the file, the format is character count followed by the
characters for the function. We will discuss each routine in detail each
of these routines are the alphanumeric escapes discussed in the GSX
Version 1.X programmers guide.
Escape Description

escfn1:
NO MODIFICATION REQUIRED This
returns the number of character rows and
columns.

escfn3:

This routine initializes the display into
alpha numeric mode. It is called at CLOSE
WORKSTATION time, and any time the
display is to be used in alpha mode. If a
mouse is connected and is interrupt driven
then the mouse should be de initialized by
calling the subroutine mouse_function.

escfn4:

This routine moves the alpha cursor up
one character row. If at top of screen no
action occurs. To customize modify the
data following cur_up in the data segment.

escfn5:

This routine moves the alpha cursor down
one character row. If at bottom of screen
no action occurs. To customize modify the
data following cur_down in the data
segment.

escfn6:

This routine moves the alpha cursor right
one character column. If at right edge of
screen no action occurs. To customize
modify the data following cur_right in the
data segment.

escfn7:

This routine moves the alpha cursor left
one character column. If at left edge of
screen no action occurs. To customize
modify the data following cur_left in the
data segment.

http://www.df.lth.se/~pi/compis/cpm-manualer/gsx/writing_drivers/colrskel.html15:07:14 04/04/03

COLOR MEMORY MAPPED SCREEN GIOS SKELETON CONFIGURATION GUIDE For CP/M-86 & CCP/M-86Page 7

escfn8:

This routine homes the cursor to the upper
left corner of the screen. To customize
modify the data following home_cur in the
data segment.

escfn9:

This routine erases from the current alpha
cursor location to the end of screen. The
cursor location is unchanged at the end of
the routine. To customize modify the data
following erase_to_eop in the data
segment.

escf10:

This routine erases from the current alpha
cursor location to the end of the line. The
cursor location is unchanged at the end of
the routine. To customize modify the data
following erase_to_eol in the data
segment.

escf11:

This routine moves the cursor to the
specified x,y location. The x,y location is
converted to ascii characters and is output
as the cur_position string.

escf12:

This routine outputs text to the alpha
numeric display. The length of the string
in contained in contrl (4) and the string is
in intin. Note that only one character is
contained in each word of intin. Also the
charac output should have the current
attribute of escape functions 13,14 in
effect.

escf13:

This routine turns on a reverse video
attribute for all subsequent characters
output through escape function 11. Note
that the attribute used must be able to be
set at any character location and must not
take up a character location. To customize
modify the data following reverse_on in
the data segment.

escf14:
This routine turns off a reverse video
attribute for all subsequent characters
output through escape function 11. To
customize modify the data following

http://www.df.lth.se/~pi/compis/cpm-manualer/gsx/writing_drivers/colrskel.html15:07:14 04/04/03

COLOR MEMORY MAPPED SCREEN GIOS SKELETON CONFIGURATION GUIDE For CP/M-86 & CCP/M-86Page 8

reverse_off in the data segment.

escf15:

This routine returns the current x,y cursor
address in the array intout (1), intout (2).
Note for those displays not able to return
the cursor position, returning a 1,1 is
acceptable.

escf16:

NO MODIFICATION REQUIRED This
routine returns the status of whether a
mouse, joystick, data tablet, etc is
connected. This is done automatically by
the true/false you placed in (mouse).

escf17:

This routine would copy the screen image
to a hardcopy device. This is very device
specific and has been rarely implemented.
THIS ROUTINE IS NOT REQUIRED FOR
ANY DRI APPLICA TIONS SOFTWARE.

escf18:

NO MODIFICATION REQUIRED This
routine turns on the graphic cross hair
cursor. This code is automatically working
when your graphics output functions are
working.

escf19:

NO MODIFICATION REQUIRED This
routine turns off the graphic cross hair
cursor. This code is automatically working
when your graphics output functions are
working.

The driver may now be tested. You must assemble the new driver
using rasm86 and link86. To test the driver RUN TESTGIOS. The
second and third screens will test out the alpha numeric escapes. All
functions should now work except locator, string, choice and valuator
input.

Upon completion of this stage your driver will be completely
functional. We will discuss each routine in detail each of these
routines are the input functions. Each is written from a sampled point
of view. This means that whenever the routine is called it tests to see if
a key is available if not it returns to the caller with the appropriate
status set. The parameter passing conventions are well defined in the
header to each function. The routines which need to be written or
modified are described below.
������4�	�B���4�c�� 0

This routine returns deltax, deltay or character and or status
informa- tion. In addition if a mouse is connected this is a

http://www.df.lth.se/~pi/compis/cpm-manualer/gsx/writing_drivers/colrskel.html15:07:14 04/04/03

COLOR MEMORY MAPPED SCREEN GIOS SKELETON CONFIGURATION GUIDE For CP/M-86 & CCP/M-86Page 9

convienent spot for it's information to be return ed. There is a
conditional assembly at the head of this module allowing a
mouse to be connected. To facili- tate a mouse being connected
this should be left intact. A mouse may be simply be added by
modifying the mouse driver and setting the mouse switch to
true. The get_loc_key routine returns three possible conditions.
(1) no keys were pressed where al=0 is returned. (2) a key was
pressed but it was not a key to be used for locator movement, it
is returned in ah and al = 1. (3) a key was pressed which is to be
used for locator movement. The delta x,delta y values can be
looked up in a table found in the data section called loc_tbl. This
table uses equates found at the front of the file to define the
ammount of deltax,deltay to be returned for key presses. We
suggest that shifted and unshifted arrow keys be used for locator.
Shifted should move in 1 pixel increments and unshifted should
move in large increments. In addition a home key should home.d ��	2?����=B���/
This routine returns a delta value or character and or status
informa- tion. The routine returns three possible conditions. (1)
no keys were pressed where al=0 is returned. (2) a key was
pressed but it was not a key to be used for valuator movement, it
is returned in ah and al = 1. (3) a key was pressed which is to be
used for valuator movement. The delta value can be looked up in
a table found in the data section called val_tbl. This table uses
equates found at the front of the file to define the ammount of
delta to be returned for key presses. We suggest that shifted and
unshifted arrow keys be used for valuator. Shifted should move
in increments of 1 and unshifted should move in large
increments.����B��2����/
This routine returns a choice value and status information. The
routine returns two possible conditions. (1) no keys were pressed
where al=0 is returned. (2) a key was pressed which is to be used
for a choice. The choice keys are typically function keys and can
be tested arithmetically rather than by a lookup table. If the key
pressed was a choice key it's number is returned in the range bx
= 1 - maximum number of choice keys and al = 1. If not a valid
key then al=0.������4���������/
This routine returns key and or status information. The routine
returns two possible conditions.

1. no keys were pressed where al=0 is returned.
2. a key was pressed and it is returned in BX and al=1.

To add a mouse to the gios you have completed you will modify a
skeleton mouse driver. You will need to familiarize yourself with the
type of mouse you wish to implement. If the mouse is connected to the
computer via RS232 then you will also need to be aware of how to
initialize the RS232 channel's baud rate, data bits/char, stop bits, parity
and the mechanism for generating and acknowleging an interrupt from
the port. The skeleton mouse driver was implemented on an IBM P.C.

http://www.df.lth.se/~pi/compis/cpm-manualer/gsx/writing_drivers/colrskel.html15:07:14 04/04/03

COLOR MEMORY MAPPED SCREEN GIOS SKELETON CONFIGURATION GUIDE For CP/M-86 & CCP/M-86Page 10

for a MOUSE SYSTEMS MOUSE. This section will describe how to
modify the skeleton provided for your system to use a MOUSE
SYSTEMS MOUSE. If another mouse with a different protocall than
this is desired to be implemented it should not be a difficult task. DRI
will be implementing other skeleton's for mice not compatible with the
MOUSE SYSTEMS protocall. Check with the technical representative
from DRI in your locale for the availability of other mice skeletons.
We will discuss the routines which will need to be modified for you to
implement the mouse on your computer.
(9B�?5)�'4��275���C/

This routine initializes several status bytes. This code should be
left intact. It next initializes the baud rate and other uart
parameters. This must be modified for your particular system.
The baud rate should be set to 1200, with 8 data bits, no parity
and 1 stop bit. Next the code initializes the interrupt vector
location. This is easily modified by seting the equate
mouse_int_vector_offset to the value 4*intlvl where intlvl is the
level of interrupt the uart is connected to. Next the code must
enable the recieve interrupt and if required the interrupt
controller may require initialization of the interrupt mask.(9B�?5��'4�A5���275���)/
This routine disables the interrupt from the mouse. It also should
put the old interrupt vector back in memory if the operating
system is expecting to recieve interrupts from that channel. This
is very implementation specific and the only thing that MUST
be done is to disable the interrupts on the chanel so that when
other gios's are loaded no spurious interrupts are generated.(9B�?�)��4��27���4 d �'����B���/
This is the interrupt time handler for the mouse. There are two
area`s which may need to be modified. The first is how you read
the byte from the communications port this is typically done by
a simple IN instruction with the port being equated to
recieve_port. The second area where modification may be
required is at mouse_int_exit where interrupts from the comm
port should be ensured to be reenabled and the interrupt
controller may require and end of interrupt command.(9B�?5C�
This equate must be set to TRUE for the mouse to be functional.
The mouse driver will now be included into your skeleton driver
at assembly time. The number of locator devices will
automatically be updated now that you have your mouse
installed.

http://www.df.lth.se/~pi/compis/cpm-manualer/gsx/writing_drivers/colrskel.html15:07:14 04/04/03

