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1 General formulation

The general optimization problem stated in the paper by Johansson and Nieto Piña (2015) is
the following:

minimize
E,p

∑
i,j,k

wijk∆(E(sij), E(nijk))

subject to ∑
j

pijE(sij) = F(li) ∀i

∑
j

pij = 1 ∀i

pij ≥ 0 ∀i, j

(1)

Explanation of the notation:

• The lexicon defines ambiguous lemmas li (e.g. rock), and senses si1, . . . , simi (e.g. rock-1
corresponding to the material and rock-2 corresponding to the type of music).

• For each lemma li, there is a given lemma embedding F(li), a D-dimensional vector typically
computed by a distributional model such as word2vec or GloVe.

• For each sense sij, we create a sense embedding E(sij), again a D-dimensional vector.

• The lemma embeddings can be decomposed into a mix (e.g. a convex combination) of
sense vectors, for instance F(rock) = 0.3 · E(rock-1) + 0.7 · E(rock-2). The “mix variables”
pij are non-negative and sum to 1 for each lemma.

• The intuition of the optimization that each sense sij should be “close” to a number of
other concepts, called the network neighbors, that we know are related to it, as defined by
a semantic network. For instance, rock-2 might be defined by the network to be related to
other types of music.

• Each network neighbor nijk is associated with a weight wijk. A higher weight means that
we should work hard to force the sense to be close to this neighbor.

• The notion of “closeness” is formalized as a distance function defined on the D-dimensional
vector space. In the rest of the paper, this will be assumed to be the squared Euclidean.

• The goal of the optimization problem is to find the sense embeddings and the mix
variables. Everything else is assumed to be given to the algorithm as input.



2 Simplified optimization problem

Since the general problem (1) is hard to solve directly, we resort to an iterative approximation
algorithm, where we consider one lemma li at a time, and solve the optimization problem just
for this lemma:

Li(E) = ∑
jk

wijk‖E(sij)− E(nijk)‖2 (2)

The next goal is to show that the full optimization problem (where we search for the
optimal sense embeddings E(sij) and the mix variables pij) can be rewritten, so that the sense
embeddings can be written in closed form if the pij are given. As mentioned in the paper, this
means that we have reduced a problem of optimizing mi · D + mi variables to one where we
just have mi − 1 variables.

When the pij are given, the only constraint remaning is the one that forces the weighted
sense embeddings to sum to the lemma embedding. To reduce the notational clutter, we drop
the i index and abuse the notation a bit: we write just sj when we mean the embedding E(sij)
of the sense sij of lemma li, and similarly we write just l for the lemma embedding F(li). After
all the simplifications, we get a quadratic problem with equality constraints:

minimize
s ∑

j,k
wjk‖sj − njk‖2

subject to ∑
j

pjsj = l
(3)

3 Deriving the closed-form solution

We introduce a Lagrangian λ into (3) for the equality constraint, and get a dual unconstrai-
ned optimization problem. Here, λ is a vector having the same dimensionality D as the
embeddings. (The number 2 is arbitrary and was selected to simplify the equations later on.)

L′i(s,λ) = ∑
jk

wjk‖sj − njk‖2 − 2λ(∑
j

pjsj − l) (4)

We take the partial derivative of the dual (4) with respect to the m-th dimension of the
sense embedding sj, and set it to zero:

∂

∂s(m)
j

L′i(s,λ) = 2∑
k

wjk(s
(m)
j − n(m)

jk )− 2pjλ
(m) = 0 (5)

As in the paper, we introduce the notion of the weighted centroid to simplify the notation.

cj :=
∑k wjknjk

∑k wjk
(6)

We solve equation (5) for s(m)
j , and use the notation of cj to keep things compact:

s(m)
j = c(m)

j −
pj

∑k wjk
λ(m) (7)

Next, we take the partial derivative of the dual (4) with respect to the m-th dimension of
the Lagrangian, and set it to zero. (This corresponds to the equality constraint.)

∂

∂λ(m)
L′i(s,λ) = ∑

j
pjs

(m)
j − l(m) = ∑

j
pj

(
c(m)

j −
pj

∑k wjk
λ(m)

)
− l(m) = 0



We rearrange a bit. . . (
∑

j
pjc

(m)
j − l(m)

)
−∑

j

p2
j

∑k wjk
λ(m) = 0

. . . and solve for λ(m):

λ(m) =
1

∑j
p2

j

∑k wjk

(
∑

j
pjc

(m)
j − l(m)

)

Finally, as in equation (4) in the paper, we introduce the notion of the residual, again with
the purpose of making the notation compact:

r :=
1

∑j
p2

j

∑k wjk

(
∑

j
pjcj − l

)
(8)

This leads us to the main result, corresponding to equation (5) in the paper.

sj = cj −
pj

∑k wjk
r (9)

4 A few observations

• If pj is 0 for some sense sj, then its sense embedding is equal to the weighted centroid cj.
This means that it is completely determined by its network neighbors, and uninfluenced
by the lemma embedding. This follows trivially from (9). Intuitively, this means that this
sense does not occur in the corpora used to compute the lemma embedding.

• Conversely, if pj is 1 for some sense sj, then it is equal to the lemma embedding l, and
completely uninfluenced by its network neighbors: intuitively, this sense dominates the
corpus. To see why this is the case, we first note that all other p-s are zero, so then we get

r = ∑
k

wjk
(
cj − l

)
sj = cj −

1
∑k wjk

r = l

• If we didn’t have the equality constraint, the optimal sj would be equal to the weighted
centroid cj. The residual is zero if the solution of the unconstrained problem already
satisfies the constraints.

5 Example

The following figure shows a hypothetical example.
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In this example, we assume the following input:

• an embedding for the lemma rock;

• rock has one sense whose network neighbors are cliff, stone, and boulder;



• rock has another sense whose network neighbors are jazz, pop, and punk;

• all neighborhood weights wjk are equal to 1.

Since all the neighborhood weights are equal, the centroids c1 and c2 correspond to the points
“in the middle” of the two neighborhoods, respectively. In this case, we set p1 closer to 0

and p2 closer to 1, so s2 is closer to the lemma embedding. Note that s1, s2, and the lemma
embedding form a straight line.
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