D-NIX is an operating system
designed with real-time capabili-
ties and UNIX compatibility. D-NIX
is written from scratch with
several conceptual differences
from standard UNIX while main-
taining full compatibilty with UNIX
System V.

D-NIX handles real-time
Real-time tasks require predicta-
ble and fast responses from the
operating system as well as the
ability to manage several simulita-
neous events and prioritize them.
D-NIX meets the speed and
predictability requirements with a
preemptive scheduler, a small
and efficient kernel, a high perfor-
mance file system and memory
resident processes.

D-NIX handles simultaneous
events and their relative priority
with asynchronous system calls
and user definable process
priorities.

Typical D-NIX applications are:

o Process control

o Factory automation

o Transaction processing
o Data acquisition

Real Time UNIX System

B D-NIX

D-NIX features

o Small efficient kernel

o Preemptive event driven scheduler

o Preemption latency up to 1000 times shorter than most
UNIX systems

o Asynchronous system calls with NO_WAIT kernel, REQUEST
and EVENT queues

o Handlers for efficient and flexible inter process communication
based on the NO_WAIT kernel

o Memory resident processes for fast response times

o Contiguous files for fast disk I/O

o Bit-mapped disk allocation for better speed and reduced disk
fragmentation

o File FLUSH system call with error diagnostics to guarantee
write to physical disk

o Mirror disk facility for increased system reliability

o Conforms to SVID at Base System and Kernel Extension levels

o Extensive network and data communication support

o User mapped VME access

On line transaction

processing

OLTP requires high data safety and
integrity as well as reliable data com-
munication. D-NIX has a safe file system
and extensive data communication
support.

The scheduler

The scheduler is preemptive and has 10
static, user settable BASE priority levels.
Each BASE level has 4 SUB levels used
for time slicing. A process with a higher
base level priority will preempt a process
with a lower priority.

Asynchronous system calls
Asynchronous system calls, necessary
in an event driven environment, require
an efficient delivery mechanism. In
D-NIX , a NO_WAIT kernel with RE-
QUEST and EVENT QUEUES is
employed. A process opens a RE-
QUEST QUEUE and gets a file descrip-
tor in return. This file descriptor is used
for future references to the REQUEST
QUEUE.

In a real-time environment it is often
necessary to wait for the occurence of
several events. In D-NIX this is handled
by a system mechanism called EVENT
QUEUE. The EVENT QUEUE appears
like a normal I/O channel where the user
can read stored data.

In order to use the EVENT QUEUE
facility, the user first opens a EVENT

QUEUE. Subsequently he can make
system calls, either to read and write or
to wait for an external event. The user
returns directly from the system call and
can make additional calls independent of
the completion of previous calls.

When all 'simultaneous’ system calls
have been placed, the user issues a
read from the EVENT QUEUE and waits
until one of the system calls have
terminated. The system automatically
calls the user from the wait state to the
EVENT QUEUE when the system call is
complete. Data read from the EVENT
QUEUE identifies the terminated system
call and the user can thereby take
actions accordingly.

The file system
A bit-map is used for disk file allocation
in D-NIX rather than the free list used in
standard UNIX. Bit-mapping facilitates
the identification of large contiguous
memory blocks for the allocation of
contiguous files. This is very useful in
real-time applications when large data
volumes are collected as this method is
faster and safer than the free list.
Another benefit is that bit-map
oriented file system does not degenerate
like a free list file system and it is
equivalent to a free list sorted at all
timed. If the disc is heavily fragmented,
the free list may be spread over the
entire disk, with a consequential increa-
se in access times.

DiAB4 DATA

Diab Data AB. Box 2029, S-183 02 T#by, Sweden. Phone +46 8 768 06 60. Telex 10978. Telefax +46 8 792 05 61. Teletex 2401-812 6002.

APPLICATION
KERNEL
v USER HANDLERS
FILE SYSTEM NETWORK | ——7 —
SWITCH < P LANDLER
VME
D-NIX NATIVE FILE ® INTERFACE VME
bt HANDLER
y A
NON D-NIX
—» FILE SYSTEM ~———
HANDLER
S
HANDLERS

Data integrity

With the file FLUSH system call, buffers
for a specific file can be written to
physical disk. This means high data
integrity, a necessity in transaction pro-
cessing. The mirror disk facility means
that two physical disks represent one
logical disk for higher system reliability.

Handlers

A handler is an extension of the UNIX
concept that manages system resour-
ces, local or remote, as a server to
applications. Handlers normally run as
user processes. With handlers, the user
can add functionality without re-linking or
re-configuring the operating system.
Normally, operating system extensions
are put in the kernel but the handler
approach gives the user a possibility to
extend the operating system with user
defined functions without changing
anything in the kernel itself.

An application program can issue
standard UNIX requests such as OPEN,
CLOSE, READ and WRITE to the
handler without considering OS internal
resource managing. The handler mounts
itself on a directory and all the subse-
quent requests made to this mount
location are passed on to the handler.
Parameters are easily passed to the
handler for internal use or propagation
to other handlers, local or remote, by
extending the pathname for the mount
location with additional information.

UNIX is a trade mark of AT&T Bell Labs. MSDOS is a trade mark of
Microsoft, Inc.

Hardware interface handling

and user specific drivers
D-NIX provides a facility called VME
macros. It enables the user to access
VME boards directly since the VME
address space is mapped into the user
process. Direct access to the hardware
such as read/writes to different ports is
essential in many real-time applications
and the use of the VME macros makes
this faster than accessing the boards
through a driver in the kernel.

Virtual demand paging

Virtual demand paging has been
employed for a long time on mainframe
systems and becomes more and more
used in small and medium size com-
puter system. Virtual demand paging
makes it possible to create programs
that in size are larger than the available
physical memory. To accomplish this
memory strategy, a secondary storage
device is required, such as the standard
hard disk, as an adjunct to the main
memory under the control of the opera-
ting system. As far as the user is con-
cerned, the main memory and seconda-
ry storage becomes one contiguous
memory resource.

The virtual demand paging mecha-
nism gives the user the full advantage of
extremely large system and application
software without worrying about the
actual memory limitations of the system.

System V compatibility
D-NIX is completely compatible with
UNIX System V. D-NIX fulfills all the
requirements defined in the UNIX
System V Interface Definition at Base
and Kernel Extensions levels. Today,
D-NIX is implemented on computers
based upon processors from the
NS32000 family and the Motorola 68000
family. All programs written for compu-
ters running under UNIX, Xenix and
other look-alikes, and programs using
UNIX system calls, may be run under
D-NIX.

D-NIX MS-DOS DATA

FILE FILE BASE
HANDLER HANDLER HANDLER

COMMUNI-
CATION
HANDLER

NETWORK
HANDLER

WINDOW
HANDLER

INTERRUPT
HANDLER

Installation requirements
Any DS90 system

Ordering information
D-NIX 072-8701-XX

XX is machine dependent.

Please note that the DS90 systems are
delivered with D-NIX.

Diab Data/848/1500/Promotive

